import os import joblib import langchain import streamlit as st import pickle as pkl from langchain.chains import RetrievalQAWithSourcesChain from langchain_community.document_loaders import UnstructuredURLLoader,WebBaseLoader from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain_community.embeddings import SentenceTransformerEmbeddings from langchain_community.vectorstores import Chroma, FAISS from langchain_openai import ChatOpenAI from dotenv import load_dotenv import time load_dotenv("ping.env") api_key=os.getenv("OPENAI_API_KEY") api_base=os.getenv("OPENAI_API_BASE") llm=ChatOpenAI(model_name="google/gemma-3n-e2b-it:free",temperature=0) try: with open("embedmo.pkl", "rb") as f: m1 = pkl.load(f) # Quick sanity check if not isinstance(m1, SentenceTransformerEmbeddings): raise ValueError("Loaded object is not a SentenceTransformerEmbeddings instance.") except Exception as e: st.error(f"Failed to load embedding model: {str(e)}") st.stop() m2=joblib.load("m1.joblib") st.title("URL ANALYSER🔗") st.sidebar.title("Give your URls🔗?") mp=st.empty() urs=[] for i in range(3): url=st.sidebar.text_input(f"URL {i+1}🔗") urs.append(url) purs=st.button("gotcha", disabled=not any(url.strip() for url in urs)) if purs: urs = [url.strip() for url in urs if url.strip()] mp.text("Loading..URl..Loader....☑️☑️☑️") valid_urls = [url for url in urs if url.strip()] if not valid_urls: st.warning("⚠️ No valid URLs entered.") st.stop() try: sic = WebBaseLoader(valid_urls) docs = sic.load() except Exception as e: st.error(f"❌ Failed to load URLs: {e}") st.stop() if not docs: st.warning("⚠️ No content loaded from URLs. This might be due to network restrictions or invalid URLs.") st.stop() st.write(len(docs)) mp.text("Loading..txt..splitter....☑️☑️☑️") tot=RecursiveCharacterTextSplitter.from_tiktoken_encoder(encoding_name="cl100k_base",chunk_size=512,chunk_overlap=16) doccs=tot.split_documents(docs) mp.text("Loading..VB...☑️☑️☑️") vv=Chroma.from_documents(doccs,m1) r2=vv.as_retriever(search_type="similarity",search_kwargs={"k":4}) mp.text("Loading..Retri....☑️☑️☑️") ra1=RetrievalQAWithSourcesChain.from_chain_type(llm=llm,retriever=r2,chain_type="map_reduce") st.session_state.ra1=ra1 mp.text("DB & Retri Done ✅✅✅") time.sleep(3) query=mp.text_input("UR Question??") if query: if "ra1" not in st.session_state: st.warning("pls give ur urls") else: with st.spinner("Wait for it..."): result=st.session_state.ra1({"question":query},return_only_outputs=True) st.header("Answer") st.subheader(result["answer"])