Spaces:
Paused
Paused
#!/usr/bin/env python | |
import os | |
import re | |
from collections.abc import Iterator | |
from threading import Thread | |
import gradio as gr | |
import spaces | |
import torch | |
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer | |
DESCRIPTION = "# ICONN Lite Chat" | |
if not torch.cuda.is_available(): | |
DESCRIPTION += "\n<p class='warning'>Running on CPU 🥶 This demo does not work on CPU.</p>" | |
top_k: int = 50 | |
MAX_MAX_NEW_TOKENS = 100000000 | |
DEFAULT_MAX_NEW_TOKENS = 10240 | |
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096")) | |
if torch.cuda.is_available(): | |
model_id = "ICONNAI/ICONN-1-Mini-Beta" | |
model = AutoModelForCausalLM.from_pretrained( | |
model_id, torch_dtype=torch.float16, device_map="auto", trust_remote_code=True | |
) | |
tokenizer = AutoTokenizer.from_pretrained(model_id) | |
def wrap_thinking_blocks(text: str) -> str: | |
def replacer(match): | |
content = match.group(1).strip() | |
return ( | |
"<details class='thinking-block'>" | |
"<summary>💭 Thinking...</summary>" | |
f"<div class='thinking-content'><pre>{content}</pre></div>" | |
"</details>" | |
) | |
return re.sub(r"<think>\s*(.*?)\s*</think>", replacer, text, flags=re.DOTALL) | |
def generate( | |
message: str, | |
chat_history: list[dict], | |
max_new_tokens: int = 1024, | |
temperature: float = 0.6, | |
top_p: float = 0.9, | |
top_k: int = 50, | |
repetition_penalty: float = 1.2, | |
) -> Iterator[str]: | |
conversation = [*chat_history, {"role": "user", "content": message}] | |
input_ids = tokenizer.apply_chat_template( | |
conversation, return_tensors="pt", enable_thinking=True | |
) | |
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH: | |
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:] | |
gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.") | |
input_ids = input_ids.to(model.device) | |
streamer = TextIteratorStreamer(tokenizer, timeout=20.0, skip_prompt=True, skip_special_tokens=True) | |
generate_kwargs = dict( | |
{"input_ids": input_ids}, | |
streamer=streamer, | |
max_new_tokens=max_new_tokens, | |
do_sample=True, | |
top_p=top_p, | |
top_k=top_k, | |
temperature=temperature, | |
num_beams=1, | |
repetition_penalty=repetition_penalty, | |
) | |
t = Thread(target=model.generate, kwargs=generate_kwargs) | |
t.start() | |
outputs = [] | |
for text in streamer: | |
wrapped = wrap_thinking_blocks("".join(outputs + [text])) | |
yield wrapped | |
outputs.append(text) | |
demo = gr.ChatInterface( | |
fn=generate, | |
additional_inputs=[ | |
gr.Slider(label="Temperature", minimum=0.1, maximum=4.0, step=0.1, value=0.6), | |
gr.Slider(label="Top-p (nucleus sampling)", minimum=0.05, maximum=1.0, step=0.05, value=0.9), | |
gr.Slider(label="Top-k", minimum=1, maximum=1000, step=1, value=50), | |
gr.Slider(label="Repetition penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.2), | |
], | |
stop_btn=None, | |
examples=[ | |
["Can you explain briefly to me what is the Python programming language?"], | |
["Explain the plot of Cinderella in a sentence."], | |
["How many hours does it take a man to eat a Helicopter?"], | |
["Write a 100-word article on 'Benefits of Open-Source in AI research'"], | |
], | |
type="messages", | |
description=DESCRIPTION, | |
css_paths="style.css", | |
) | |
if __name__ == "__main__": | |
demo.queue(max_size=20).launch() | |