ICONN-Lite / app.py
Enderchef's picture
Update app.py
46f6bfb verified
raw
history blame
3.5 kB
#!/usr/bin/env python
import os
import re
from collections.abc import Iterator
from threading import Thread
import gradio as gr
import spaces
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
DESCRIPTION = "# ICONN Lite Chat"
if not torch.cuda.is_available():
DESCRIPTION += "\n<p class='warning'>Running on CPU 🥶 This demo does not work on CPU.</p>"
top_k: int = 50
MAX_MAX_NEW_TOKENS = 100000000
DEFAULT_MAX_NEW_TOKENS = 10240
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
if torch.cuda.is_available():
model_id = "ICONNAI/ICONN-1-Mini-Beta"
model = AutoModelForCausalLM.from_pretrained(
model_id, torch_dtype=torch.float16, device_map="auto", trust_remote_code=True
)
tokenizer = AutoTokenizer.from_pretrained(model_id)
def wrap_thinking_blocks(text: str) -> str:
def replacer(match):
content = match.group(1).strip()
return (
"<details class='thinking-block'>"
"<summary>💭 Thinking...</summary>"
f"<div class='thinking-content'><pre>{content}</pre></div>"
"</details>"
)
return re.sub(r"<think>\s*(.*?)\s*</think>", replacer, text, flags=re.DOTALL)
@spaces.GPU
def generate(
message: str,
chat_history: list[dict],
max_new_tokens: int = 1024,
temperature: float = 0.6,
top_p: float = 0.9,
top_k: int = 50,
repetition_penalty: float = 1.2,
) -> Iterator[str]:
conversation = [*chat_history, {"role": "user", "content": message}]
input_ids = tokenizer.apply_chat_template(
conversation, return_tensors="pt", enable_thinking=True
)
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
input_ids = input_ids.to(model.device)
streamer = TextIteratorStreamer(tokenizer, timeout=20.0, skip_prompt=True, skip_special_tokens=True)
generate_kwargs = dict(
{"input_ids": input_ids},
streamer=streamer,
max_new_tokens=max_new_tokens,
do_sample=True,
top_p=top_p,
top_k=top_k,
temperature=temperature,
num_beams=1,
repetition_penalty=repetition_penalty,
)
t = Thread(target=model.generate, kwargs=generate_kwargs)
t.start()
outputs = []
for text in streamer:
wrapped = wrap_thinking_blocks("".join(outputs + [text]))
yield wrapped
outputs.append(text)
demo = gr.ChatInterface(
fn=generate,
additional_inputs=[
gr.Slider(label="Temperature", minimum=0.1, maximum=4.0, step=0.1, value=0.6),
gr.Slider(label="Top-p (nucleus sampling)", minimum=0.05, maximum=1.0, step=0.05, value=0.9),
gr.Slider(label="Top-k", minimum=1, maximum=1000, step=1, value=50),
gr.Slider(label="Repetition penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.2),
],
stop_btn=None,
examples=[
["Can you explain briefly to me what is the Python programming language?"],
["Explain the plot of Cinderella in a sentence."],
["How many hours does it take a man to eat a Helicopter?"],
["Write a 100-word article on 'Benefits of Open-Source in AI research'"],
],
type="messages",
description=DESCRIPTION,
css_paths="style.css",
)
if __name__ == "__main__":
demo.queue(max_size=20).launch()