Spaces:
Sleeping
Sleeping
Upload 2 files
Browse files- app_v4.py +85 -0
- requirements.txt +6 -0
app_v4.py
ADDED
|
@@ -0,0 +1,85 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import requests
|
| 3 |
+
import Levenshtein
|
| 4 |
+
import librosa
|
| 5 |
+
import torch
|
| 6 |
+
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
|
| 7 |
+
|
| 8 |
+
def load_model():
|
| 9 |
+
MODEL_ID = "jonatasgrosman/wav2vec2-large-xlsr-53-arabic"
|
| 10 |
+
processor = Wav2Vec2Processor.from_pretrained(MODEL_ID)
|
| 11 |
+
model = Wav2Vec2ForCTC.from_pretrained(MODEL_ID)
|
| 12 |
+
return processor, model
|
| 13 |
+
|
| 14 |
+
processor, model = load_model()
|
| 15 |
+
|
| 16 |
+
def transcribe_audio_hf(audio_path):
|
| 17 |
+
"""
|
| 18 |
+
Transcribes speech from an audio file using a pretrained Wav2Vec2 model.
|
| 19 |
+
Args:
|
| 20 |
+
audio_path (str): Path to the audio file.
|
| 21 |
+
Returns:
|
| 22 |
+
str: The transcription of the speech in the audio file.
|
| 23 |
+
"""
|
| 24 |
+
speech_array, sampling_rate = librosa.load(audio_path, sr=16000)
|
| 25 |
+
input_values = processor(speech_array, sampling_rate=sampling_rate, return_tensors="pt", padding=True).input_values
|
| 26 |
+
with torch.no_grad():
|
| 27 |
+
logits = model(input_values).logits
|
| 28 |
+
predicted_ids = torch.argmax(logits, dim=-1)
|
| 29 |
+
transcription = processor.batch_decode(predicted_ids)[0].strip()
|
| 30 |
+
return transcription
|
| 31 |
+
|
| 32 |
+
def levenshtein_similarity(transcription1, transcription2):
|
| 33 |
+
"""
|
| 34 |
+
Calculate the Levenshtein similarity between two transcriptions.
|
| 35 |
+
Args:
|
| 36 |
+
transcription1 (str): The first transcription.
|
| 37 |
+
transcription2 (str): The second transcription.
|
| 38 |
+
Returns:
|
| 39 |
+
float: A normalized similarity score between 0 and 1, where 1 indicates identical transcriptions.
|
| 40 |
+
"""
|
| 41 |
+
distance = Levenshtein.distance(transcription1, transcription2)
|
| 42 |
+
max_len = max(len(transcription1), len(transcription2))
|
| 43 |
+
return 1 - distance / max_len # Normalize to get similarity score
|
| 44 |
+
|
| 45 |
+
def evaluate_audio_similarity(original_audio, user_audio):
|
| 46 |
+
"""
|
| 47 |
+
Compares the similarity between the transcription of an original audio file and a user's audio file.
|
| 48 |
+
Args:
|
| 49 |
+
original_audio (str): Path to the original audio file.
|
| 50 |
+
user_audio (str): Path to the user's audio file.
|
| 51 |
+
Returns:
|
| 52 |
+
tuple: Transcriptions and Levenshtein similarity score.
|
| 53 |
+
"""
|
| 54 |
+
transcription_original = transcribe_audio_hf(original_audio)
|
| 55 |
+
transcription_user = transcribe_audio_hf(user_audio)
|
| 56 |
+
similarity_score_levenshtein = levenshtein_similarity(transcription_original, transcription_user)
|
| 57 |
+
return transcription_original, transcription_user, similarity_score_levenshtein
|
| 58 |
+
|
| 59 |
+
def perform_testing(original_audio, user_audio):
|
| 60 |
+
if original_audio is not None and user_audio is not None:
|
| 61 |
+
transcription_original, transcription_user, similarity_score = evaluate_audio_similarity(original_audio, user_audio)
|
| 62 |
+
return (
|
| 63 |
+
f"**Original Transcription:** {transcription_original}",
|
| 64 |
+
f"**User Transcription:** {transcription_user}",
|
| 65 |
+
f"**Levenshtein Similarity Score:** {similarity_score:.2f}"
|
| 66 |
+
)
|
| 67 |
+
|
| 68 |
+
# Gradio Interface
|
| 69 |
+
with gr.Blocks() as app:
|
| 70 |
+
gr.Markdown("# Audio Transcription and Similarity Checker")
|
| 71 |
+
|
| 72 |
+
original_audio_upload = gr.Audio(label="Upload Original Audio", type="filepath")
|
| 73 |
+
user_audio_upload = gr.Audio(label="Upload User Audio", type="filepath")
|
| 74 |
+
upload_button = gr.Button("Perform Testing")
|
| 75 |
+
output_original_transcription = gr.Markdown()
|
| 76 |
+
output_user_transcription = gr.Markdown()
|
| 77 |
+
output_similarity_score = gr.Markdown()
|
| 78 |
+
|
| 79 |
+
upload_button.click(
|
| 80 |
+
perform_testing,
|
| 81 |
+
inputs=[original_audio_upload, user_audio_upload],
|
| 82 |
+
outputs=[output_original_transcription, output_user_transcription, output_similarity_score]
|
| 83 |
+
)
|
| 84 |
+
|
| 85 |
+
app.launch()
|
requirements.txt
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
transformers[torch]
|
| 2 |
+
pydub
|
| 3 |
+
Levenshtein
|
| 4 |
+
av
|
| 5 |
+
librosa
|
| 6 |
+
gradio
|