Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,149 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import torch
|
3 |
+
import librosa
|
4 |
+
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
|
5 |
+
import Levenshtein
|
6 |
+
from io import BytesIO
|
7 |
+
from audio_recorder_streamlit import audio_recorder
|
8 |
+
|
9 |
+
# Load the processor and model for Wav2Vec2 once
|
10 |
+
@st.cache_resource
|
11 |
+
def load_model():
|
12 |
+
MODEL_ID = "jonatasgrosman/wav2vec2-large-xlsr-53-arabic"
|
13 |
+
processor = Wav2Vec2Processor.from_pretrained(MODEL_ID)
|
14 |
+
model = Wav2Vec2ForCTC.from_pretrained(MODEL_ID)
|
15 |
+
return processor, model
|
16 |
+
|
17 |
+
processor, model = load_model()
|
18 |
+
|
19 |
+
def transcribe_audio(audio_bytes):
|
20 |
+
"""
|
21 |
+
Transcribes speech from an audio file using a pretrained Wav2Vec2 model.
|
22 |
+
|
23 |
+
Args:
|
24 |
+
audio_bytes (bytes): Audio data in bytes.
|
25 |
+
|
26 |
+
Returns:
|
27 |
+
str: The transcription of the speech in the audio file.
|
28 |
+
"""
|
29 |
+
speech_array, sampling_rate = librosa.load(BytesIO(audio_bytes), sr=16000)
|
30 |
+
input_values = processor(speech_array, sampling_rate=sampling_rate, return_tensors="pt", padding=True).input_values
|
31 |
+
with torch.no_grad():
|
32 |
+
logits = model(input_values).logits
|
33 |
+
predicted_ids = torch.argmax(logits, dim=-1)
|
34 |
+
transcription = processor.batch_decode(predicted_ids)[0].strip()
|
35 |
+
return transcription
|
36 |
+
|
37 |
+
def levenshtein_similarity(transcription1, transcription2):
|
38 |
+
"""
|
39 |
+
Calculate the Levenshtein similarity between two transcriptions.
|
40 |
+
|
41 |
+
Args:
|
42 |
+
transcription1 (str): The first transcription.
|
43 |
+
transcription2 (str): The second transcription.
|
44 |
+
|
45 |
+
Returns:
|
46 |
+
float: A normalized similarity score between 0 and 1, where 1 indicates identical transcriptions.
|
47 |
+
"""
|
48 |
+
distance = Levenshtein.distance(transcription1, transcription2)
|
49 |
+
max_len = max(len(transcription1), len(transcription2))
|
50 |
+
return 1 - distance / max_len # Normalize to get similarity score
|
51 |
+
|
52 |
+
def evaluate_audio_similarity(original_audio_bytes, user_audio_bytes):
|
53 |
+
"""
|
54 |
+
Compares the similarity between the transcription of an original audio file and a user's audio file.
|
55 |
+
|
56 |
+
Args:
|
57 |
+
original_audio_bytes (bytes): Bytes of the original audio file.
|
58 |
+
user_audio_bytes (bytes): Bytes of the user's audio file.
|
59 |
+
|
60 |
+
Returns:
|
61 |
+
tuple: Transcriptions and Levenshtein similarity score.
|
62 |
+
"""
|
63 |
+
transcription_original = transcribe_audio(original_audio_bytes)
|
64 |
+
transcription_user = transcribe_audio(user_audio_bytes)
|
65 |
+
similarity_score_levenshtein = levenshtein_similarity(transcription_original, transcription_user)
|
66 |
+
return transcription_original, transcription_user, similarity_score_levenshtein
|
67 |
+
|
68 |
+
st.title("Audio Transcription and Similarity Checker")
|
69 |
+
|
70 |
+
# Choose between upload or record
|
71 |
+
st.sidebar.header("Input Method")
|
72 |
+
input_method = st.sidebar.selectbox("Choose Input Method", ["Upload", "Record"])
|
73 |
+
|
74 |
+
original_audio_bytes = None
|
75 |
+
user_audio_bytes = None
|
76 |
+
|
77 |
+
if input_method == "Upload":
|
78 |
+
# Upload original audio file
|
79 |
+
original_audio = st.file_uploader("Upload Original Audio", type=["wav", "mp3"])
|
80 |
+
# Upload user audio file
|
81 |
+
user_audio = st.file_uploader("Upload User Audio", type=["wav", "mp3"])
|
82 |
+
|
83 |
+
if original_audio:
|
84 |
+
original_audio_bytes = original_audio.read()
|
85 |
+
st.audio(original_audio_bytes, format="audio/wav")
|
86 |
+
if user_audio:
|
87 |
+
user_audio_bytes = user_audio.read()
|
88 |
+
st.audio(user_audio_bytes, format="audio/wav")
|
89 |
+
|
90 |
+
# Add a button to perform the test
|
91 |
+
if original_audio_bytes and user_audio_bytes:
|
92 |
+
if st.button("Perform Testing"):
|
93 |
+
with st.spinner("Performing transcription and similarity testing..."):
|
94 |
+
transcription_original, transcription_user, similarity_score = evaluate_audio_similarity(original_audio_bytes, user_audio_bytes)
|
95 |
+
|
96 |
+
# Display results
|
97 |
+
st.markdown("---")
|
98 |
+
st.subheader("Transcriptions and Similarity Score")
|
99 |
+
st.write(f"**Original Transcription:** {transcription_original}")
|
100 |
+
st.write(f"**User Transcription:** {transcription_user}")
|
101 |
+
st.write(f"**Levenshtein Similarity Score:** {similarity_score:.2f}")
|
102 |
+
|
103 |
+
if similarity_score > 0.8: # Adjust the threshold as needed
|
104 |
+
st.success("The pronunciation is likely correct based on transcription similarity.")
|
105 |
+
else:
|
106 |
+
st.error("The pronunciation may be incorrect based on transcription similarity.")
|
107 |
+
|
108 |
+
elif input_method == "Record":
|
109 |
+
st.write("Record or Upload Original Audio")
|
110 |
+
original_audio_bytes = audio_recorder(key="original_audio_recorder")
|
111 |
+
|
112 |
+
if not original_audio_bytes:
|
113 |
+
original_audio = st.file_uploader("Or Upload Original Audio", type=["wav", "mp3"])
|
114 |
+
if original_audio:
|
115 |
+
original_audio_bytes = original_audio.read()
|
116 |
+
|
117 |
+
if original_audio_bytes:
|
118 |
+
with st.spinner("Processing original audio..."):
|
119 |
+
st.audio(original_audio_bytes, format="audio/wav")
|
120 |
+
|
121 |
+
st.write("Record or Upload User Audio")
|
122 |
+
user_audio_bytes = audio_recorder(key="user_audio_recorder")
|
123 |
+
|
124 |
+
if not user_audio_bytes:
|
125 |
+
user_audio = st.file_uploader("Or Upload User Audio", type=["wav", "mp3"])
|
126 |
+
if user_audio:
|
127 |
+
user_audio_bytes = user_audio.read()
|
128 |
+
|
129 |
+
if user_audio_bytes:
|
130 |
+
with st.spinner("Processing user audio..."):
|
131 |
+
st.audio(user_audio_bytes, format="audio/wav")
|
132 |
+
|
133 |
+
# Add a button to perform the test
|
134 |
+
if original_audio_bytes and user_audio_bytes:
|
135 |
+
if st.button("Perform Testing"):
|
136 |
+
with st.spinner("Performing transcription and similarity testing..."):
|
137 |
+
transcription_original, transcription_user, similarity_score = evaluate_audio_similarity(original_audio_bytes, user_audio_bytes)
|
138 |
+
|
139 |
+
# Display results
|
140 |
+
st.markdown("---")
|
141 |
+
st.subheader("Transcriptions and Similarity Score")
|
142 |
+
st.write(f"**Original Transcription:** {transcription_original}")
|
143 |
+
st.write(f"**User Transcription:** {transcription_user}")
|
144 |
+
st.write(f"**Levenshtein Similarity Score:** {similarity_score:.2f}")
|
145 |
+
|
146 |
+
if similarity_score > 0.8: # Adjust the threshold as needed
|
147 |
+
st.success("The pronunciation is likely correct based on transcription similarity.")
|
148 |
+
else:
|
149 |
+
st.error("The pronunciation may be incorrect based on transcription similarity.")
|