Spaces:
Sleeping
Sleeping
Mudassir-75
commited on
Shifted to Inference API
Browse files
app.py
CHANGED
@@ -1,47 +1,34 @@
|
|
1 |
import streamlit as st
|
2 |
-
import
|
3 |
-
import librosa
|
4 |
-
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
|
5 |
import Levenshtein
|
6 |
from io import BytesIO
|
7 |
from audio_recorder_streamlit import audio_recorder
|
8 |
|
9 |
-
#
|
10 |
@st.cache_resource
|
11 |
-
def
|
12 |
-
|
13 |
-
processor = Wav2Vec2Processor.from_pretrained(MODEL_ID)
|
14 |
-
model = Wav2Vec2ForCTC.from_pretrained(MODEL_ID)
|
15 |
-
return processor, model
|
16 |
|
17 |
-
|
18 |
-
|
19 |
-
def transcribe_audio(audio_bytes):
|
20 |
"""
|
21 |
-
Transcribes speech from an audio file using
|
22 |
-
|
23 |
Args:
|
24 |
audio_bytes (bytes): Audio data in bytes.
|
25 |
-
|
26 |
Returns:
|
27 |
str: The transcription of the speech in the audio file.
|
28 |
"""
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
predicted_ids = torch.argmax(logits, dim=-1)
|
34 |
-
transcription = processor.batch_decode(predicted_ids)[0].strip()
|
35 |
-
return transcription
|
36 |
|
37 |
def levenshtein_similarity(transcription1, transcription2):
|
38 |
"""
|
39 |
Calculate the Levenshtein similarity between two transcriptions.
|
40 |
-
|
41 |
Args:
|
42 |
transcription1 (str): The first transcription.
|
43 |
transcription2 (str): The second transcription.
|
44 |
-
|
45 |
Returns:
|
46 |
float: A normalized similarity score between 0 and 1, where 1 indicates identical transcriptions.
|
47 |
"""
|
@@ -52,16 +39,14 @@ def levenshtein_similarity(transcription1, transcription2):
|
|
52 |
def evaluate_audio_similarity(original_audio_bytes, user_audio_bytes):
|
53 |
"""
|
54 |
Compares the similarity between the transcription of an original audio file and a user's audio file.
|
55 |
-
|
56 |
Args:
|
57 |
original_audio_bytes (bytes): Bytes of the original audio file.
|
58 |
user_audio_bytes (bytes): Bytes of the user's audio file.
|
59 |
-
|
60 |
Returns:
|
61 |
tuple: Transcriptions and Levenshtein similarity score.
|
62 |
"""
|
63 |
-
transcription_original =
|
64 |
-
transcription_user =
|
65 |
similarity_score_levenshtein = levenshtein_similarity(transcription_original, transcription_user)
|
66 |
return transcription_original, transcription_user, similarity_score_levenshtein
|
67 |
|
|
|
1 |
import streamlit as st
|
2 |
+
import requests
|
|
|
|
|
3 |
import Levenshtein
|
4 |
from io import BytesIO
|
5 |
from audio_recorder_streamlit import audio_recorder
|
6 |
|
7 |
+
# Function to securely load the Hugging Face API token
|
8 |
@st.cache_resource
|
9 |
+
def load_hf_token():
|
10 |
+
return st.secrets["HF_API_KEY"]
|
|
|
|
|
|
|
11 |
|
12 |
+
# Function to query the Hugging Face Inference API
|
13 |
+
def transcribe_audio_hf(audio_bytes):
|
|
|
14 |
"""
|
15 |
+
Transcribes speech from an audio file using the Hugging Face Inference API.
|
|
|
16 |
Args:
|
17 |
audio_bytes (bytes): Audio data in bytes.
|
|
|
18 |
Returns:
|
19 |
str: The transcription of the speech in the audio file.
|
20 |
"""
|
21 |
+
API_URL = "https://api-inference.huggingface.co/models/jonatasgrosman/wav2vec2-large-xlsr-53-arabic"
|
22 |
+
headers = {"Authorization": f"Bearer {load_hf_token()}"}
|
23 |
+
response = requests.post(API_URL, headers=headers, data=audio_bytes)
|
24 |
+
return response.json().get("text", "").strip()
|
|
|
|
|
|
|
25 |
|
26 |
def levenshtein_similarity(transcription1, transcription2):
|
27 |
"""
|
28 |
Calculate the Levenshtein similarity between two transcriptions.
|
|
|
29 |
Args:
|
30 |
transcription1 (str): The first transcription.
|
31 |
transcription2 (str): The second transcription.
|
|
|
32 |
Returns:
|
33 |
float: A normalized similarity score between 0 and 1, where 1 indicates identical transcriptions.
|
34 |
"""
|
|
|
39 |
def evaluate_audio_similarity(original_audio_bytes, user_audio_bytes):
|
40 |
"""
|
41 |
Compares the similarity between the transcription of an original audio file and a user's audio file.
|
|
|
42 |
Args:
|
43 |
original_audio_bytes (bytes): Bytes of the original audio file.
|
44 |
user_audio_bytes (bytes): Bytes of the user's audio file.
|
|
|
45 |
Returns:
|
46 |
tuple: Transcriptions and Levenshtein similarity score.
|
47 |
"""
|
48 |
+
transcription_original = transcribe_audio_hf(original_audio_bytes)
|
49 |
+
transcription_user = transcribe_audio_hf(user_audio_bytes)
|
50 |
similarity_score_levenshtein = levenshtein_similarity(transcription_original, transcription_user)
|
51 |
return transcription_original, transcription_user, similarity_score_levenshtein
|
52 |
|