import gradio as gr import requests import io import random import os import time from PIL import Image import json API_URLS = { "SDXL 1.0": "https://api-inference.huggingface.co/models/stabilityai/stable-diffusion-xl-base-1.0", "SD 3.5": "https://api-inference.huggingface.co/models/stabilityai/stable-diffusion-3.5-large", "SD 3.5 Turbo": "https://api-inference.huggingface.co/models/stabilityai/stable-diffusion-3.5-large-turbo", "Fluently XL Final": "https://api-inference.huggingface.co/models/fluently/Fluently-XL-Final" } API_TOKEN = os.getenv("HF_READ_TOKEN") headers = {"Authorization": f"Bearer {API_TOKEN}"} timeout = 100 def query(prompt, is_negative=False, steps=30, cfg_scale=7, sampler="DPM++ 2M Karras", seed=-1, strength=0.7, model="SDXL 1.0"): if prompt == "" or prompt == None: return None key = random.randint(0, 99999) API_TOKEN = random.choice([os.getenv("HF_READ_TOKEN")]) headers = {"Authorization": f"Bearer {API_TOKEN}"} payload = { "inputs": prompt, "is_negative": is_negative, "steps": steps, "cfg_scale": cfg_scale, "seed": seed if seed!= -1 else random.randint(1, 1000000000), "strength": strength, "provider": "replicate" } API_URL = API_URLS[model] response = requests.post(API_URL, headers=headers, json=payload, timeout=timeout) if response.status_code!= 200: print(f"Error: Failed to get image. Response status: {response.status_code}") print(f"Response content: {response.text}") if response.status_code == 503: raise gr.Error(f"{response.status_code} : The model is being loaded") raise gr.Error(f"{response.status_code}") try: image_bytes = response.content image = Image.open(io.BytesIO(image_bytes)) print(f'\033[1mGeneration {key} completed!\033[0m ({prompt})') return image except Exception as e: print(f"Error when trying to open the image: {e}") return None css = """ #app-container { max-width: 600px; margin-left: auto; margin-right: auto; } """ with gr.Blocks(theme='Nymbo/Nymbo_Theme', css=css) as app: gr.HTML("