Spaces:
Build error
Build error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,41 +1,56 @@
|
|
| 1 |
import streamlit as st
|
| 2 |
-
from transformers import T5Tokenizer, T5ForConditionalGeneration
|
| 3 |
import torch
|
|
|
|
| 4 |
|
| 5 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 6 |
@st.cache_resource
|
| 7 |
def load_model():
|
| 8 |
model_name = "flax-community/t5-recipe-generation"
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
|
| 17 |
-
# Generate recipe function with
|
| 18 |
def generate_recipe(ingredients, tokenizer, model, max_length=512):
|
| 19 |
# Prepare input
|
| 20 |
input_text = f"Generate recipe with: {ingredients}"
|
| 21 |
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 25 |
|
| 26 |
-
#
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
num_beams=4, # Reduced beam search for faster CPU processing
|
| 33 |
-
early_stopping=True
|
| 34 |
-
)
|
| 35 |
-
|
| 36 |
-
# Decode and clean the output
|
| 37 |
-
recipe = tokenizer.decode(output_ids[0], skip_special_tokens=True)
|
| 38 |
-
return recipe
|
| 39 |
|
| 40 |
# Streamlit app
|
| 41 |
def main():
|
|
@@ -57,9 +72,12 @@ def main():
|
|
| 57 |
with st.spinner("Generating recipe..."):
|
| 58 |
recipe = generate_recipe(ingredients_input, tokenizer, model)
|
| 59 |
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
|
|
|
|
|
|
|
|
|
| 63 |
else:
|
| 64 |
st.warning("Please enter some ingredients!")
|
| 65 |
|
|
|
|
| 1 |
import streamlit as st
|
|
|
|
| 2 |
import torch
|
| 3 |
+
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
| 4 |
|
| 5 |
+
# Ensure SentencePiece is installed
|
| 6 |
+
try:
|
| 7 |
+
import sentencepiece
|
| 8 |
+
except ImportError:
|
| 9 |
+
st.error("SentencePiece is not installed. Please install it using: pip install sentencepiece")
|
| 10 |
+
st.stop()
|
| 11 |
+
|
| 12 |
+
# Load the model and tokenizer with caching
|
| 13 |
@st.cache_resource
|
| 14 |
def load_model():
|
| 15 |
model_name = "flax-community/t5-recipe-generation"
|
| 16 |
+
try:
|
| 17 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 18 |
+
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
|
| 19 |
+
|
| 20 |
+
# Explicitly set to CPU and use float32 to reduce memory usage
|
| 21 |
+
model = model.to('cpu').float()
|
| 22 |
+
|
| 23 |
+
return tokenizer, model
|
| 24 |
+
except Exception as e:
|
| 25 |
+
st.error(f"Error loading model: {e}")
|
| 26 |
+
st.stop()
|
| 27 |
|
| 28 |
+
# Generate recipe function with error handling
|
| 29 |
def generate_recipe(ingredients, tokenizer, model, max_length=512):
|
| 30 |
# Prepare input
|
| 31 |
input_text = f"Generate recipe with: {ingredients}"
|
| 32 |
|
| 33 |
+
try:
|
| 34 |
+
# Use torch no_grad to reduce memory consumption
|
| 35 |
+
with torch.no_grad():
|
| 36 |
+
input_ids = tokenizer.encode(input_text, return_tensors="pt", max_length=max_length, truncation=True)
|
| 37 |
+
|
| 38 |
+
# Adjust generation parameters for faster CPU inference
|
| 39 |
+
output_ids = model.generate(
|
| 40 |
+
input_ids,
|
| 41 |
+
max_length=max_length,
|
| 42 |
+
num_return_sequences=1,
|
| 43 |
+
no_repeat_ngram_size=2,
|
| 44 |
+
num_beams=4, # Reduced beam search for faster CPU processing
|
| 45 |
+
early_stopping=True
|
| 46 |
+
)
|
| 47 |
|
| 48 |
+
# Decode and clean the output
|
| 49 |
+
recipe = tokenizer.decode(output_ids[0], skip_special_tokens=True)
|
| 50 |
+
return recipe
|
| 51 |
+
except Exception as e:
|
| 52 |
+
st.error(f"Error generating recipe: {e}")
|
| 53 |
+
return None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 54 |
|
| 55 |
# Streamlit app
|
| 56 |
def main():
|
|
|
|
| 72 |
with st.spinner("Generating recipe..."):
|
| 73 |
recipe = generate_recipe(ingredients_input, tokenizer, model)
|
| 74 |
|
| 75 |
+
if recipe:
|
| 76 |
+
# Display recipe sections
|
| 77 |
+
st.subheader("🥘 Generated Recipe")
|
| 78 |
+
st.write(recipe)
|
| 79 |
+
else:
|
| 80 |
+
st.error("Failed to generate recipe. Please try again.")
|
| 81 |
else:
|
| 82 |
st.warning("Please enter some ingredients!")
|
| 83 |
|