Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,56 +1,99 @@
|
|
1 |
import os
|
2 |
import gradio as gr
|
3 |
import requests
|
4 |
-
import inspect
|
5 |
import pandas as pd
|
6 |
-
from
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
)
|
11 |
|
12 |
# (Keep Constants as is)
|
13 |
# --- Constants ---
|
14 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
|
|
15 |
|
16 |
-
|
17 |
-
# ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------
|
18 |
-
class BasicAgent:
|
19 |
-
def __init__(self):
|
20 |
|
21 |
-
webTool = DuckDuckGoSearchTool()
|
22 |
-
token = os.getenv("HF_TOKEN")
|
23 |
-
model = InferenceClientModel("Qwen/Qwen2.5-72B-Instruct", token=token)
|
24 |
|
25 |
-
|
26 |
-
|
27 |
-
|
|
|
28 |
|
29 |
-
|
30 |
|
31 |
-
print("BasicAgent initialized.")
|
32 |
|
33 |
-
|
34 |
-
|
|
|
35 |
|
36 |
-
answer = self.agent.run(
|
37 |
-
"You must answer the question exactly, with a single word. For example: '4' or 'Paris'. The question is: "
|
38 |
-
+ question
|
39 |
-
)
|
40 |
-
|
41 |
-
print(f"Agent returning fixed answer: {answer}")
|
42 |
-
return answer
|
43 |
|
44 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
"""
|
46 |
Fetches all questions, runs the BasicAgent on them, submits all answers,
|
47 |
and displays the results.
|
48 |
"""
|
49 |
# --- Determine HF Space Runtime URL and Repo URL ---
|
50 |
-
space_id = os.getenv("SPACE_ID")
|
51 |
|
52 |
if profile:
|
53 |
-
username= f"{profile.username}"
|
54 |
print(f"User logged in: {username}")
|
55 |
else:
|
56 |
print("User not logged in.")
|
@@ -62,7 +105,7 @@ def run_and_submit_all( profile: gr.OAuthProfile | None):
|
|
62 |
|
63 |
# 1. Instantiate Agent ( modify this part to create your agent)
|
64 |
try:
|
65 |
-
agent =
|
66 |
except Exception as e:
|
67 |
print(f"Error instantiating agent: {e}")
|
68 |
return f"Error initializing agent: {e}", None
|
@@ -77,16 +120,16 @@ def run_and_submit_all( profile: gr.OAuthProfile | None):
|
|
77 |
response.raise_for_status()
|
78 |
questions_data = response.json()
|
79 |
if not questions_data:
|
80 |
-
|
81 |
-
|
82 |
print(f"Fetched {len(questions_data)} questions.")
|
83 |
except requests.exceptions.RequestException as e:
|
84 |
print(f"Error fetching questions: {e}")
|
85 |
return f"Error fetching questions: {e}", None
|
86 |
except requests.exceptions.JSONDecodeError as e:
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
except Exception as e:
|
91 |
print(f"An unexpected error occurred fetching questions: {e}")
|
92 |
return f"An unexpected error occurred fetching questions: {e}", None
|
@@ -99,26 +142,68 @@ def run_and_submit_all( profile: gr.OAuthProfile | None):
|
|
99 |
task_id = item.get("task_id")
|
100 |
question_text = item.get("question")
|
101 |
question_file = item.get("file_name")
|
102 |
-
|
103 |
-
|
104 |
-
|
|
|
|
|
105 |
if not task_id or question_text is None:
|
106 |
print(f"Skipping item with missing task_id or question: {item}")
|
107 |
continue
|
108 |
try:
|
109 |
-
|
110 |
-
|
111 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
112 |
except Exception as e:
|
113 |
-
|
114 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
115 |
|
116 |
if not answers_payload:
|
117 |
print("Agent did not produce any answers to submit.")
|
118 |
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
|
119 |
|
120 |
-
# 4. Prepare Submission
|
121 |
-
submission_data = {
|
|
|
|
|
|
|
|
|
122 |
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
|
123 |
print(status_update)
|
124 |
|
@@ -136,6 +221,7 @@ def run_and_submit_all( profile: gr.OAuthProfile | None):
|
|
136 |
f"Message: {result_data.get('message', 'No message received.')}"
|
137 |
)
|
138 |
print("Submission successful.")
|
|
|
139 |
results_df = pd.DataFrame(results_log)
|
140 |
return final_status, results_df
|
141 |
except requests.exceptions.HTTPError as e:
|
@@ -188,20 +274,19 @@ with gr.Blocks() as demo:
|
|
188 |
|
189 |
run_button = gr.Button("Run Evaluation & Submit All Answers")
|
190 |
|
191 |
-
status_output = gr.Textbox(
|
|
|
|
|
192 |
# Removed max_rows=10 from DataFrame constructor
|
193 |
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
|
194 |
|
195 |
-
run_button.click(
|
196 |
-
fn=run_and_submit_all,
|
197 |
-
outputs=[status_output, results_table]
|
198 |
-
)
|
199 |
|
200 |
if __name__ == "__main__":
|
201 |
-
print("\n" + "-"*30 + " App Starting " + "-"*30)
|
202 |
# Check for SPACE_HOST and SPACE_ID at startup for information
|
203 |
space_host_startup = os.getenv("SPACE_HOST")
|
204 |
-
space_id_startup = os.getenv("SPACE_ID")
|
205 |
|
206 |
if space_host_startup:
|
207 |
print(f"✅ SPACE_HOST found: {space_host_startup}")
|
@@ -209,14 +294,18 @@ if __name__ == "__main__":
|
|
209 |
else:
|
210 |
print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
|
211 |
|
212 |
-
if space_id_startup:
|
213 |
print(f"✅ SPACE_ID found: {space_id_startup}")
|
214 |
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
|
215 |
-
print(
|
|
|
|
|
216 |
else:
|
217 |
-
print(
|
|
|
|
|
218 |
|
219 |
-
print("-"*(60 + len(" App Starting ")) + "\n")
|
220 |
|
221 |
print("Launching Gradio Interface for Basic Agent Evaluation...")
|
222 |
-
demo.launch(debug=True, share=False)
|
|
|
1 |
import os
|
2 |
import gradio as gr
|
3 |
import requests
|
|
|
4 |
import pandas as pd
|
5 |
+
from pydub import AudioSegment
|
6 |
+
from agent import Agent
|
7 |
+
import speech_recognition as sr
|
8 |
+
from dotenv import load_dotenv
|
|
|
9 |
|
10 |
# (Keep Constants as is)
|
11 |
# --- Constants ---
|
12 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
13 |
+
api_url = DEFAULT_API_URL
|
14 |
|
15 |
+
load_dotenv()
|
|
|
|
|
|
|
16 |
|
|
|
|
|
|
|
17 |
|
18 |
+
def get_questions():
|
19 |
+
questions_url = f"{api_url}/questions"
|
20 |
+
response = requests.get(questions_url, timeout=15)
|
21 |
+
response.raise_for_status()
|
22 |
|
23 |
+
return response.json()
|
24 |
|
|
|
25 |
|
26 |
+
def file_exists_check(file_path):
|
27 |
+
"""Check if a file exists at the given path."""
|
28 |
+
return os.path.exists(file_path)
|
29 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
|
31 |
+
def download_file(task_id, target_filename):
|
32 |
+
file_exists = file_exists_check(target_filename)
|
33 |
+
|
34 |
+
if file_exists:
|
35 |
+
print(f"Skipping download {target_filename}")
|
36 |
+
return target_filename
|
37 |
+
|
38 |
+
questions_url = f"{api_url}/files/{task_id}"
|
39 |
+
response = requests.get(questions_url, timeout=15)
|
40 |
+
response.raise_for_status()
|
41 |
+
|
42 |
+
# Save the file content to "file.mp3"
|
43 |
+
with open(target_filename, "wb") as file:
|
44 |
+
file.write(response.content)
|
45 |
+
|
46 |
+
|
47 |
+
def extract_data_from_excel(filename):
|
48 |
+
target_file = "temp.json"
|
49 |
+
# Read the Excel file
|
50 |
+
df = pd.read_excel(filename)
|
51 |
+
|
52 |
+
# Convert to JSON and save
|
53 |
+
df.to_json(target_file, orient="records", indent=2)
|
54 |
+
|
55 |
+
print(f"Converted {filename} to {target_file}")
|
56 |
+
|
57 |
+
with open(target_file, "r") as file:
|
58 |
+
return file.read()
|
59 |
+
|
60 |
+
|
61 |
+
def extract_code_from_file(filename):
|
62 |
+
with open(filename, "r") as file:
|
63 |
+
return file.read()
|
64 |
+
|
65 |
+
|
66 |
+
def convert_from_mp3_to_wav(sourceFile, targetFile):
|
67 |
+
# convert mp3 file to wav
|
68 |
+
sound = AudioSegment.from_mp3(sourceFile)
|
69 |
+
sound.export(targetFile, format="wav")
|
70 |
+
|
71 |
+
|
72 |
+
def read_audio(filename):
|
73 |
+
# use the audio file as the audio source
|
74 |
+
r = sr.Recognizer()
|
75 |
+
with sr.AudioFile(filename) as source:
|
76 |
+
audio = r.record(source) # read the entire audio file
|
77 |
+
|
78 |
+
return r.recognize_google(audio)
|
79 |
+
|
80 |
+
|
81 |
+
def transcribe(filename):
|
82 |
+
wav_filename = "transcript.wav"
|
83 |
+
convert_from_mp3_to_wav(filename, wav_filename)
|
84 |
+
return read_audio(wav_filename)
|
85 |
+
|
86 |
+
|
87 |
+
def run_and_submit_all(profile: gr.OAuthProfile | None):
|
88 |
"""
|
89 |
Fetches all questions, runs the BasicAgent on them, submits all answers,
|
90 |
and displays the results.
|
91 |
"""
|
92 |
# --- Determine HF Space Runtime URL and Repo URL ---
|
93 |
+
space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code
|
94 |
|
95 |
if profile:
|
96 |
+
username = f"{profile.username}"
|
97 |
print(f"User logged in: {username}")
|
98 |
else:
|
99 |
print("User not logged in.")
|
|
|
105 |
|
106 |
# 1. Instantiate Agent ( modify this part to create your agent)
|
107 |
try:
|
108 |
+
agent = Agent()
|
109 |
except Exception as e:
|
110 |
print(f"Error instantiating agent: {e}")
|
111 |
return f"Error initializing agent: {e}", None
|
|
|
120 |
response.raise_for_status()
|
121 |
questions_data = response.json()
|
122 |
if not questions_data:
|
123 |
+
print("Fetched questions list is empty.")
|
124 |
+
return "Fetched questions list is empty or invalid format.", None
|
125 |
print(f"Fetched {len(questions_data)} questions.")
|
126 |
except requests.exceptions.RequestException as e:
|
127 |
print(f"Error fetching questions: {e}")
|
128 |
return f"Error fetching questions: {e}", None
|
129 |
except requests.exceptions.JSONDecodeError as e:
|
130 |
+
print(f"Error decoding JSON response from questions endpoint: {e}")
|
131 |
+
print(f"Response text: {response.text[:500]}")
|
132 |
+
return f"Error decoding server response for questions: {e}", None
|
133 |
except Exception as e:
|
134 |
print(f"An unexpected error occurred fetching questions: {e}")
|
135 |
return f"An unexpected error occurred fetching questions: {e}", None
|
|
|
142 |
task_id = item.get("task_id")
|
143 |
question_text = item.get("question")
|
144 |
question_file = item.get("file_name")
|
145 |
+
has_file = question_file != ""
|
146 |
+
is_mp3 = question_file.endswith(".mp3")
|
147 |
+
is_py = question_file.endswith(".py")
|
148 |
+
is_excel = question_file.endswith(".xlsx")
|
149 |
+
|
150 |
if not task_id or question_text is None:
|
151 |
print(f"Skipping item with missing task_id or question: {item}")
|
152 |
continue
|
153 |
try:
|
154 |
+
if has_file and is_mp3:
|
155 |
+
download_file(task_id, question_file)
|
156 |
+
transcript = transcribe(question_file)
|
157 |
+
question_text += f"\nThe questions has an audio transcript. It goes like this: {transcript}"
|
158 |
+
if has_file and is_py:
|
159 |
+
download_file(task_id, question_file)
|
160 |
+
code = extract_code_from_file(question_file)
|
161 |
+
question_text += f"\nThe questions contains python code: {code}"
|
162 |
+
if has_file and is_excel:
|
163 |
+
download_file(task_id, question_file)
|
164 |
+
data = extract_data_from_excel(question_file)
|
165 |
+
question_text += f"\nThe questions contains data: {data}"
|
166 |
+
|
167 |
+
raw_answer = agent(question_text)
|
168 |
+
|
169 |
+
if isinstance(raw_answer, str) and "AGENT ERROR" in raw_answer:
|
170 |
+
print("retry")
|
171 |
+
raw_answer = agent(question_text)
|
172 |
+
|
173 |
+
# if isinstance(raw_answer, str):
|
174 |
+
# submitted_answer = raw_answer.split("</think>")[-1].strip()
|
175 |
+
# else:
|
176 |
+
# submitted_answer = raw_answer
|
177 |
+
answers_payload.append(
|
178 |
+
{"task_id": task_id, "submitted_answer": raw_answer}
|
179 |
+
)
|
180 |
+
results_log.append(
|
181 |
+
{
|
182 |
+
"Task ID": task_id,
|
183 |
+
"Question": question_text,
|
184 |
+
"Submitted Answer": raw_answer,
|
185 |
+
}
|
186 |
+
)
|
187 |
except Exception as e:
|
188 |
+
print(f"Error running agent on task {task_id}: {e}")
|
189 |
+
results_log.append(
|
190 |
+
{
|
191 |
+
"Task ID": task_id,
|
192 |
+
"Question": question_text,
|
193 |
+
"Submitted Answer": f"AGENT ERROR: {e}",
|
194 |
+
}
|
195 |
+
)
|
196 |
|
197 |
if not answers_payload:
|
198 |
print("Agent did not produce any answers to submit.")
|
199 |
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
|
200 |
|
201 |
+
# 4. Prepare Submission
|
202 |
+
submission_data = {
|
203 |
+
"username": username.strip(),
|
204 |
+
"agent_code": agent_code,
|
205 |
+
"answers": answers_payload,
|
206 |
+
}
|
207 |
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
|
208 |
print(status_update)
|
209 |
|
|
|
221 |
f"Message: {result_data.get('message', 'No message received.')}"
|
222 |
)
|
223 |
print("Submission successful.")
|
224 |
+
print(final_status)
|
225 |
results_df = pd.DataFrame(results_log)
|
226 |
return final_status, results_df
|
227 |
except requests.exceptions.HTTPError as e:
|
|
|
274 |
|
275 |
run_button = gr.Button("Run Evaluation & Submit All Answers")
|
276 |
|
277 |
+
status_output = gr.Textbox(
|
278 |
+
label="Run Status / Submission Result", lines=5, interactive=False
|
279 |
+
)
|
280 |
# Removed max_rows=10 from DataFrame constructor
|
281 |
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
|
282 |
|
283 |
+
run_button.click(fn=run_and_submit_all, outputs=[status_output, results_table])
|
|
|
|
|
|
|
284 |
|
285 |
if __name__ == "__main__":
|
286 |
+
print("\n" + "-" * 30 + " App Starting " + "-" * 30)
|
287 |
# Check for SPACE_HOST and SPACE_ID at startup for information
|
288 |
space_host_startup = os.getenv("SPACE_HOST")
|
289 |
+
space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup
|
290 |
|
291 |
if space_host_startup:
|
292 |
print(f"✅ SPACE_HOST found: {space_host_startup}")
|
|
|
294 |
else:
|
295 |
print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
|
296 |
|
297 |
+
if space_id_startup: # Print repo URLs if SPACE_ID is found
|
298 |
print(f"✅ SPACE_ID found: {space_id_startup}")
|
299 |
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
|
300 |
+
print(
|
301 |
+
f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main"
|
302 |
+
)
|
303 |
else:
|
304 |
+
print(
|
305 |
+
"ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined."
|
306 |
+
)
|
307 |
|
308 |
+
print("-" * (60 + len(" App Starting ")) + "\n")
|
309 |
|
310 |
print("Launching Gradio Interface for Basic Agent Evaluation...")
|
311 |
+
demo.launch(debug=True, share=False)
|