Spaces:
Running
Running
| """ | |
| File: utils.py | |
| Author: Elena Ryumina and Dmitry Ryumin | |
| Description: Utility functions. | |
| License: MIT License | |
| """ | |
| import pandas as pd | |
| def preprocess_scores_df(df, name): | |
| df.index.name = name | |
| df.index += 1 | |
| df.index = df.index.map(str) | |
| return df | |
| def read_csv_file(file_path, drop_columns=[]): | |
| df = pd.read_csv(file_path) | |
| if len(drop_columns) != 0: | |
| df = pd.DataFrame(df.drop(drop_columns, axis=1)) | |
| return preprocess_scores_df(df, "ID") | |
| def round_numeric_values(x): | |
| if isinstance(x, (int, float)): | |
| return round(x, 3) | |
| return x | |
| def apply_rounding_and_rename_columns(df): | |
| df_rounded = df.rename( | |
| columns={ | |
| "Openness": "OPE", | |
| "Conscientiousness": "CON", | |
| "Extraversion": "EXT", | |
| "Agreeableness": "AGR", | |
| "Non-Neuroticism": "NNEU", | |
| } | |
| ) | |
| columns_to_round = df_rounded.columns[1:] | |
| df_rounded[columns_to_round] = df_rounded[columns_to_round].applymap( | |
| round_numeric_values | |
| ) | |
| return df_rounded | |
| def extract_profession_weights(df, dropdown_candidates): | |
| try: | |
| weights_professions = df.loc[df["Profession"] == dropdown_candidates, :].values[ | |
| 0 | |
| ][1:] | |
| interactive_professions = False | |
| except Exception: | |
| weights_professions = [0] * 5 | |
| interactive_professions = True | |
| else: | |
| weights_professions = list(map(int, weights_professions)) | |
| return weights_professions, interactive_professions | |