Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,20 +1,20 @@
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 3 |
import torch
|
| 4 |
-
import os
|
| 5 |
|
| 6 |
-
# Récupérer le token Hugging Face
|
| 7 |
hf_token = os.environ.get("HF_TOKEN")
|
| 8 |
|
| 9 |
-
#
|
| 10 |
-
model_name = "tiiuae/
|
| 11 |
|
| 12 |
-
# Charger le tokenizer et le modèle
|
| 13 |
tokenizer = AutoTokenizer.from_pretrained(model_name, use_auth_token=hf_token)
|
| 14 |
model = AutoModelForCausalLM.from_pretrained(
|
| 15 |
model_name,
|
| 16 |
-
torch_dtype=torch.float16,
|
| 17 |
-
device_map="auto",
|
| 18 |
use_auth_token=hf_token
|
| 19 |
)
|
| 20 |
|
|
@@ -22,16 +22,9 @@ model = AutoModelForCausalLM.from_pretrained(
|
|
| 22 |
system_prompt = """Tu es Aria, une IA bienveillante et polie qui répond de façon concise et claire."""
|
| 23 |
|
| 24 |
def chat(message, history=[]):
|
| 25 |
-
# Construire le prompt complet avec historique
|
| 26 |
prompt = system_prompt + "\n" + "\n".join([f"Utilisateur: {m[0]}\nAria: {m[1]}" for m in history]) + f"\nUtilisateur: {message}\nAria:"
|
| 27 |
-
|
| 28 |
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
|
| 29 |
-
outputs = model.generate(
|
| 30 |
-
**inputs,
|
| 31 |
-
max_new_tokens=200,
|
| 32 |
-
do_sample=True, # rend les réponses plus naturelles
|
| 33 |
-
temperature=0.7
|
| 34 |
-
)
|
| 35 |
reply = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 36 |
# Récupérer uniquement la réponse d'Aria
|
| 37 |
reply = reply.split("Aria:")[-1].strip()
|
|
|
|
| 1 |
+
import os
|
| 2 |
import gradio as gr
|
| 3 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 4 |
import torch
|
|
|
|
| 5 |
|
| 6 |
+
# Récupérer le token Hugging Face depuis les secrets
|
| 7 |
hf_token = os.environ.get("HF_TOKEN")
|
| 8 |
|
| 9 |
+
# Modèle léger et rapide
|
| 10 |
+
model_name = "tiiuae/phi-4-mini"
|
| 11 |
|
| 12 |
+
# Charger le tokenizer et le modèle avec token
|
| 13 |
tokenizer = AutoTokenizer.from_pretrained(model_name, use_auth_token=hf_token)
|
| 14 |
model = AutoModelForCausalLM.from_pretrained(
|
| 15 |
model_name,
|
| 16 |
+
torch_dtype=torch.float16,
|
| 17 |
+
device_map="auto",
|
| 18 |
use_auth_token=hf_token
|
| 19 |
)
|
| 20 |
|
|
|
|
| 22 |
system_prompt = """Tu es Aria, une IA bienveillante et polie qui répond de façon concise et claire."""
|
| 23 |
|
| 24 |
def chat(message, history=[]):
|
|
|
|
| 25 |
prompt = system_prompt + "\n" + "\n".join([f"Utilisateur: {m[0]}\nAria: {m[1]}" for m in history]) + f"\nUtilisateur: {message}\nAria:"
|
|
|
|
| 26 |
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
|
| 27 |
+
outputs = model.generate(**inputs, max_new_tokens=200)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 28 |
reply = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 29 |
# Récupérer uniquement la réponse d'Aria
|
| 30 |
reply = reply.split("Aria:")[-1].strip()
|