Merge branch 'feature/clean_code' into dev
Browse files- app.py +453 -478
- climateqa/engine/chains/retrieve_documents.py +3 -13
- climateqa/engine/chains/retrieve_papers.py +2 -2
- climateqa/engine/graph.py +3 -3
- style.css +396 -525
app.py
CHANGED
@@ -1,54 +1,38 @@
|
|
1 |
-
|
2 |
-
embeddings_function = get_embeddings_function()
|
3 |
-
|
4 |
-
from sentence_transformers import CrossEncoder
|
5 |
-
|
6 |
-
# reranker = CrossEncoder("mixedbread-ai/mxbai-rerank-xsmall-v1")
|
7 |
-
|
8 |
-
import gradio as gr
|
9 |
-
from gradio_modal import Modal
|
10 |
-
import pandas as pd
|
11 |
-
import numpy as np
|
12 |
import os
|
|
|
13 |
import time
|
14 |
import re
|
15 |
-
import json
|
16 |
-
|
17 |
-
from gradio import ChatMessage
|
18 |
-
|
19 |
-
# from gradio_modal import Modal
|
20 |
-
|
21 |
-
from io import BytesIO
|
22 |
import base64
|
23 |
-
|
24 |
from datetime import datetime
|
25 |
-
from
|
26 |
-
|
27 |
-
from utils import create_user_id
|
28 |
|
|
|
|
|
|
|
|
|
29 |
from gradio_modal import Modal
|
|
|
|
|
30 |
|
31 |
-
|
32 |
-
|
33 |
-
from langchain_core.runnables.schema import StreamEvent
|
34 |
-
|
35 |
-
# ClimateQ&A imports
|
36 |
from climateqa.engine.llm import get_llm
|
37 |
from climateqa.engine.vectorstore import get_pinecone_vectorstore
|
38 |
-
# from climateqa.knowledge.retriever import ClimateQARetriever
|
39 |
from climateqa.engine.reranker import get_reranker
|
40 |
-
from climateqa.engine.embeddings import get_embeddings_function
|
41 |
-
from climateqa.engine.chains.prompts import audience_prompts
|
42 |
from climateqa.sample_questions import QUESTIONS
|
43 |
-
from climateqa.constants import POSSIBLE_REPORTS
|
44 |
from climateqa.utils import get_image_from_azure_blob_storage
|
45 |
from climateqa.engine.graph import make_graph_agent
|
46 |
-
from climateqa.engine.embeddings import get_embeddings_function
|
47 |
from climateqa.engine.chains.retrieve_papers import find_papers
|
48 |
-
|
49 |
-
from
|
50 |
-
|
51 |
-
|
|
|
|
|
|
|
|
|
52 |
|
53 |
# Load environment variables in local mode
|
54 |
try:
|
@@ -57,8 +41,6 @@ try:
|
|
57 |
except Exception as e:
|
58 |
pass
|
59 |
|
60 |
-
import requests
|
61 |
-
|
62 |
# Set up Gradio Theme
|
63 |
theme = gr.themes.Base(
|
64 |
primary_hue="blue",
|
@@ -66,15 +48,26 @@ theme = gr.themes.Base(
|
|
66 |
font=[gr.themes.GoogleFont("Poppins"), "ui-sans-serif", "system-ui", "sans-serif"],
|
67 |
)
|
68 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
69 |
|
|
|
|
|
70 |
|
71 |
-
|
|
|
72 |
|
73 |
-
|
74 |
-
|
75 |
-
"content": init_prompt,
|
76 |
-
}
|
77 |
|
|
|
78 |
account_key = os.environ["BLOB_ACCOUNT_KEY"]
|
79 |
if len(account_key) == 86:
|
80 |
account_key += "=="
|
@@ -91,7 +84,7 @@ share_client = service.get_share_client(file_share_name)
|
|
91 |
|
92 |
user_id = create_user_id()
|
93 |
|
94 |
-
|
95 |
CITATION_LABEL = "BibTeX citation for ClimateQ&A"
|
96 |
CITATION_TEXT = r"""@misc{climateqa,
|
97 |
author={Théo Alves Da Costa, Timothée Bohe},
|
@@ -106,41 +99,73 @@ CITATION_TEXT = r"""@misc{climateqa,
|
|
106 |
}
|
107 |
"""
|
108 |
|
109 |
-
|
110 |
-
|
111 |
# Create vectorstore and retriever
|
112 |
-
|
113 |
-
|
|
|
114 |
|
115 |
llm = get_llm(provider="openai",max_tokens = 1024,temperature = 0.0)
|
116 |
-
reranker = get_reranker("
|
117 |
|
118 |
agent = make_graph_agent(llm=llm, vectorstore_ipcc=vectorstore, vectorstore_graphs=vectorstore_graphs, reranker=reranker)
|
119 |
|
|
|
120 |
def update_config_modal_visibility(config_open):
|
121 |
new_config_visibility_status = not config_open
|
122 |
return gr.update(visible=new_config_visibility_status), new_config_visibility_status
|
123 |
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
128 |
date_now = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
129 |
print(f">> NEW QUESTION ({date_now}) : {query}")
|
130 |
|
131 |
audience_prompt = init_audience(audience)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
132 |
|
133 |
-
#
|
134 |
-
|
135 |
-
sources = ["IPCC", "IPBES", "IPOS"]
|
136 |
-
|
137 |
-
if reports is None or len(reports) == 0:
|
138 |
-
reports = []
|
139 |
-
|
140 |
-
inputs = {"user_input": query,"audience": audience_prompt,"sources_input":sources, "relevant_content_sources" : relevant_content_sources, "search_only": search_only, "reports": reports}
|
141 |
-
result = agent.astream_events(inputs,version = "v1")
|
142 |
-
|
143 |
|
|
|
144 |
docs = []
|
145 |
related_contents = []
|
146 |
docs_html = ""
|
@@ -149,84 +174,95 @@ async def chat(query, history, audience, sources, reports, relevant_content_sour
|
|
149 |
output_keywords = ""
|
150 |
start_streaming = False
|
151 |
graphs_html = ""
|
152 |
-
|
|
|
153 |
|
|
|
154 |
steps_display = {
|
155 |
-
"categorize_intent":("🔄️ Analyzing user message",True),
|
156 |
-
"transform_query":("🔄️ Thinking step by step to answer the question",True),
|
157 |
-
"retrieve_documents":("🔄️ Searching in the knowledge base",False),
|
158 |
}
|
159 |
-
|
160 |
-
used_documents = []
|
161 |
-
answer_message_content = ""
|
162 |
try:
|
|
|
163 |
async for event in result:
|
164 |
if "langgraph_node" in event["metadata"]:
|
165 |
node = event["metadata"]["langgraph_node"]
|
166 |
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
|
|
|
|
|
|
|
|
|
|
172 |
intent = event["data"]["output"]["intent"]
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
elif event["name"] in steps_display.keys() and event["event"] == "on_chain_start": #display steps
|
181 |
event_description, display_output = steps_display[node]
|
182 |
-
if not hasattr(history[-1], 'metadata') or
|
183 |
-
history.
|
184 |
-
|
185 |
-
|
186 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
187 |
|
|
|
188 |
elif event["name"] in ["retrieve_graphs", "retrieve_graphs_ai"] and event["event"] == "on_chain_end":
|
189 |
graphs_html = handle_retrieved_owid_graphs(event, graphs_html)
|
190 |
|
|
|
|
|
|
|
|
|
|
|
191 |
|
192 |
-
|
193 |
-
if hasattr(history[-1],"content"):
|
194 |
-
history[-1].content += "Decompose question into sub-questions: \n\n - " + "\n - ".join([q["question"] for q in event["data"]["output"]["remaining_questions"]])
|
195 |
-
|
196 |
-
if event["name"] == "categorize_intent" and event["event"] == "on_chain_start":
|
197 |
-
print("X")
|
198 |
-
|
199 |
-
yield history, docs_html, output_query, output_language, related_contents , graphs_html, #,output_query,output_keywords
|
200 |
-
|
201 |
-
except Exception as e:
|
202 |
-
print(event, "has failed")
|
203 |
-
raise gr.Error(f"{e}")
|
204 |
|
|
|
|
|
|
|
205 |
|
206 |
try:
|
207 |
-
# Log
|
208 |
if os.getenv("GRADIO_ENV") != "local":
|
209 |
timestamp = str(datetime.now().timestamp())
|
210 |
-
file = timestamp + ".json"
|
211 |
prompt = history[1]["content"]
|
212 |
logs = {
|
213 |
"user_id": str(user_id),
|
214 |
"prompt": prompt,
|
215 |
"query": prompt,
|
216 |
-
"question":output_query,
|
217 |
-
"sources":sources,
|
218 |
-
"docs":serialize_docs(docs),
|
219 |
"answer": history[-1].content,
|
220 |
"time": timestamp,
|
221 |
}
|
222 |
-
log_on_azure(
|
223 |
except Exception as e:
|
224 |
print(f"Error logging on Azure Blob Storage: {e}")
|
225 |
-
|
|
|
226 |
|
227 |
yield history, docs_html, output_query, output_language, related_contents, graphs_html
|
228 |
|
229 |
-
|
230 |
def save_feedback(feed: str, user_id):
|
231 |
if len(feed) > 1:
|
232 |
timestamp = str(datetime.now().timestamp())
|
@@ -239,9 +275,7 @@ def save_feedback(feed: str, user_id):
|
|
239 |
log_on_azure(file, logs, share_client)
|
240 |
return "Feedback submitted, thank you!"
|
241 |
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
def log_on_azure(file, logs, share_client):
|
246 |
logs = json.dumps(logs)
|
247 |
file_client = share_client.get_file_client(file)
|
@@ -256,25 +290,6 @@ def log_on_azure(file, logs, share_client):
|
|
256 |
# --------------------------------------------------------------------
|
257 |
|
258 |
|
259 |
-
init_prompt = """
|
260 |
-
Hello, I am ClimateQ&A, a conversational assistant designed to help you understand climate change and biodiversity loss. I will answer your questions by **sifting through the IPCC and IPBES scientific reports**.
|
261 |
-
|
262 |
-
❓ How to use
|
263 |
-
- **Language**: You can ask me your questions in any language.
|
264 |
-
- **Audience**: You can specify your audience (children, general public, experts) to get a more adapted answer.
|
265 |
-
- **Sources**: You can choose to search in the IPCC or IPBES reports, or both.
|
266 |
-
- **Relevant content sources**: You can choose to search for figures, papers, or graphs that can be relevant for your question.
|
267 |
-
|
268 |
-
⚠️ Limitations
|
269 |
-
*Please note that the AI is not perfect and may sometimes give irrelevant answers. If you are not satisfied with the answer, please ask a more specific question or report your feedback to help us improve the system.*
|
270 |
-
|
271 |
-
🛈 Information
|
272 |
-
Please note that we log your questions for meta-analysis purposes, so avoid sharing any sensitive or personal information.
|
273 |
-
|
274 |
-
|
275 |
-
What do you want to learn ?
|
276 |
-
"""
|
277 |
-
|
278 |
|
279 |
def vote(data: gr.LikeData):
|
280 |
if data.liked:
|
@@ -291,293 +306,312 @@ def save_graph(saved_graphs_state, embedding, category):
|
|
291 |
return saved_graphs_state, gr.Button("Graph Saved")
|
292 |
|
293 |
|
|
|
|
|
|
|
|
|
|
|
294 |
|
295 |
-
|
296 |
-
|
297 |
-
|
298 |
-
|
299 |
-
config_open = gr.State(False)
|
300 |
|
301 |
-
|
302 |
-
|
|
|
303 |
|
304 |
-
|
305 |
-
|
306 |
-
|
307 |
-
|
308 |
-
|
309 |
-
|
310 |
-
|
311 |
-
|
312 |
-
|
313 |
-
|
314 |
-
max_height="80vh",
|
315 |
-
height="100vh"
|
316 |
-
)
|
317 |
-
|
318 |
-
# bot.like(vote,None,None)
|
319 |
|
|
|
320 |
|
321 |
-
|
322 |
-
|
323 |
-
|
324 |
-
|
325 |
-
|
326 |
-
scale=12,
|
327 |
-
lines=1,
|
328 |
-
interactive=True,
|
329 |
-
elem_id="input-textbox"
|
330 |
-
)
|
331 |
-
|
332 |
-
config_button = gr.Button(
|
333 |
-
"",
|
334 |
-
elem_id="config-button"
|
335 |
-
)
|
336 |
-
|
337 |
-
|
338 |
-
|
339 |
-
with gr.Column(scale=2, variant="panel",elem_id = "right-panel"):
|
340 |
|
341 |
|
342 |
-
with gr.Tabs(elem_id = "right_panel_tab") as tabs:
|
343 |
-
with gr.TabItem("Examples",elem_id = "tab-examples",id = 0):
|
344 |
-
|
345 |
-
examples_hidden = gr.Textbox(visible = False)
|
346 |
-
first_key = list(QUESTIONS.keys())[0]
|
347 |
-
dropdown_samples = gr.Dropdown(QUESTIONS.keys(),value = first_key,interactive = True,show_label = True,label = "Select a category of sample questions",elem_id = "dropdown-samples")
|
348 |
|
349 |
-
|
350 |
-
|
351 |
-
|
352 |
-
|
353 |
-
|
354 |
-
|
355 |
-
|
356 |
-
|
357 |
-
|
358 |
-
|
359 |
-
|
360 |
-
|
361 |
-
|
362 |
-
|
363 |
-
|
364 |
-
|
365 |
-
|
366 |
-
|
367 |
-
|
368 |
-
|
369 |
-
|
370 |
-
|
371 |
-
|
372 |
-
|
373 |
-
|
374 |
-
|
375 |
-
|
376 |
-
|
377 |
-
|
378 |
-
|
379 |
-
# value=["IPCC"],
|
380 |
-
# interactive=True,
|
381 |
-
# )
|
382 |
-
# dropdown_external_sources = gr.CheckboxGroup(
|
383 |
-
# ["IPCC figures","OpenAlex", "OurWorldInData"],
|
384 |
-
# label="Select database to search for relevant content",
|
385 |
-
# value=["IPCC figures"],
|
386 |
-
# interactive=True,
|
387 |
-
# )
|
388 |
-
|
389 |
-
# dropdown_reports = gr.Dropdown(
|
390 |
-
# POSSIBLE_REPORTS,
|
391 |
-
# label="Or select specific reports",
|
392 |
-
# multiselect=True,
|
393 |
-
# value=None,
|
394 |
-
# interactive=True,
|
395 |
-
# )
|
396 |
-
|
397 |
-
# search_only = gr.Checkbox(label="Search only without chating", value=False, interactive=True, elem_id="checkbox-chat")
|
398 |
-
|
399 |
-
|
400 |
-
# dropdown_audience = gr.Dropdown(
|
401 |
-
# ["Children","General public","Experts"],
|
402 |
-
# label="Select audience",
|
403 |
-
# value="Experts",
|
404 |
-
# interactive=True,
|
405 |
-
# )
|
406 |
-
|
407 |
-
|
408 |
-
# after = gr.Slider(minimum=1950,maximum=2023,step=1,value=1960,label="Publication date",show_label=True,interactive=True,elem_id="date-papers", visible=False)
|
409 |
-
|
410 |
-
|
411 |
-
# output_query = gr.Textbox(label="Query used for retrieval",show_label = True,elem_id = "reformulated-query",lines = 2,interactive = False, visible= False)
|
412 |
-
# output_language = gr.Textbox(label="Language",show_label = True,elem_id = "language",lines = 1,interactive = False, visible= False)
|
413 |
-
|
414 |
-
|
415 |
-
# dropdown_external_sources.change(lambda x: gr.update(visible = True ) if "OpenAlex" in x else gr.update(visible=False) , inputs=[dropdown_external_sources], outputs=[after])
|
416 |
-
# # dropdown_external_sources.change(lambda x: gr.update(visible = True ) if "OpenAlex" in x else gr.update(visible=False) , inputs=[dropdown_external_sources], outputs=[after], visible=True)
|
417 |
-
|
418 |
-
|
419 |
-
with gr.Tab("Sources",elem_id = "tab-sources",id = 1) as tab_sources:
|
420 |
-
sources_textbox = gr.HTML(show_label=False, elem_id="sources-textbox")
|
421 |
-
|
422 |
-
|
423 |
-
|
424 |
-
with gr.Tab("Recommended content", elem_id="tab-recommended_content",id=2) as tab_recommended_content:
|
425 |
-
with gr.Tabs(elem_id = "group-subtabs") as tabs_recommended_content:
|
426 |
|
427 |
-
|
428 |
-
|
429 |
-
|
430 |
-
|
431 |
-
|
432 |
-
|
433 |
-
|
434 |
-
|
435 |
-
|
436 |
-
|
437 |
-
|
438 |
-
|
439 |
-
|
440 |
-
|
441 |
-
|
442 |
-
|
443 |
-
|
444 |
-
|
445 |
-
|
446 |
-
|
447 |
-
|
448 |
-
|
449 |
-
|
450 |
-
with gr.Accordion(visible=True, elem_id="papers-relevant-popup",label= "See relevant papers", open= False) as relevant_popup:
|
451 |
-
papers_html = gr.HTML(show_label=False, elem_id="papers-textbox")
|
452 |
-
|
453 |
-
btn_citations_network = gr.Button("Explore papers citations network")
|
454 |
-
# Fenêtre simulée pour le Citations Network
|
455 |
-
with Modal(visible=False) as papers_modal:
|
456 |
-
citations_network = gr.HTML("<h3>Citations Network Graph</h3>", visible=True, elem_id="papers-citations-network")
|
457 |
-
btn_citations_network.click(lambda: Modal(visible=True), None, papers_modal)
|
458 |
-
|
459 |
-
|
460 |
-
|
461 |
-
with gr.Tab("Graphs", elem_id="tab-graphs", id=5) as tab_graphs:
|
462 |
-
|
463 |
-
graphs_container = gr.HTML("<h2>There are no graphs to be displayed at the moment. Try asking another question.</h2>",elem_id="graphs-container")
|
464 |
-
current_graphs.change(lambda x : x, inputs=[current_graphs], outputs=[graphs_container])
|
465 |
-
|
466 |
-
with Modal(visible=False,elem_id="modal-config") as config_modal:
|
467 |
-
gr.Markdown("Reminders: You can talk in any language, ClimateQ&A is multi-lingual!")
|
468 |
-
|
469 |
-
|
470 |
-
# with gr.Row():
|
471 |
-
|
472 |
-
dropdown_sources = gr.CheckboxGroup(
|
473 |
-
["IPCC", "IPBES","IPOS"],
|
474 |
-
label="Select source (by default search in all sources)",
|
475 |
-
value=["IPCC"],
|
476 |
-
interactive=True,
|
477 |
-
)
|
478 |
-
|
479 |
-
dropdown_reports = gr.Dropdown(
|
480 |
-
POSSIBLE_REPORTS,
|
481 |
-
label="Or select specific reports",
|
482 |
-
multiselect=True,
|
483 |
-
value=None,
|
484 |
-
interactive=True,
|
485 |
-
)
|
486 |
-
|
487 |
-
dropdown_external_sources = gr.CheckboxGroup(
|
488 |
-
["Figures (IPCC/IPBES)","Papers (OpenAlex)", "Graphs (OurWorldInData)"],
|
489 |
-
label="Select database to search for relevant content",
|
490 |
-
value=["Figures (IPCC/IPBES)"],
|
491 |
-
interactive=True,
|
492 |
-
)
|
493 |
-
|
494 |
-
search_only = gr.Checkbox(label="Search only for recommended content without chating", value=False, interactive=True, elem_id="checkbox-chat")
|
495 |
-
|
496 |
-
|
497 |
-
dropdown_audience = gr.Dropdown(
|
498 |
-
["Children","General public","Experts"],
|
499 |
-
label="Select audience",
|
500 |
-
value="Experts",
|
501 |
-
interactive=True,
|
502 |
-
)
|
503 |
-
|
504 |
-
|
505 |
-
after = gr.Slider(minimum=1950,maximum=2023,step=1,value=1960,label="Publication date",show_label=True,interactive=True,elem_id="date-papers", visible=False)
|
506 |
-
|
507 |
-
|
508 |
-
output_query = gr.Textbox(label="Query used for retrieval",show_label = True,elem_id = "reformulated-query",lines = 2,interactive = False, visible= False)
|
509 |
-
output_language = gr.Textbox(label="Language",show_label = True,elem_id = "language",lines = 1,interactive = False, visible= False)
|
510 |
-
|
511 |
-
|
512 |
-
dropdown_external_sources.change(lambda x: gr.update(visible = True ) if "Papers (OpenAlex)" in x else gr.update(visible=False) , inputs=[dropdown_external_sources], outputs=[after])
|
513 |
-
|
514 |
-
close_config_modal = gr.Button("Validate and Close",elem_id="close-config-modal")
|
515 |
-
close_config_modal.click(fn=update_config_modal_visibility, inputs=[config_open], outputs=[config_modal, config_open])
|
516 |
-
# dropdown_external_sources.change(lambda x: gr.update(visible = True ) if "OpenAlex" in x else gr.update(visible=False) , inputs=[dropdown_external_sources], outputs=[after], visible=True)
|
517 |
-
|
518 |
-
|
519 |
-
|
520 |
-
config_button.click(fn=update_config_modal_visibility, inputs=[config_open], outputs=[config_modal, config_open])
|
521 |
-
|
522 |
-
# with gr.Tab("OECD",elem_id = "tab-oecd",id = 6):
|
523 |
-
# oecd_indicator = "RIVER_FLOOD_RP100_POP_SH"
|
524 |
-
# oecd_topic = "climate"
|
525 |
-
# oecd_latitude = "46.8332"
|
526 |
-
# oecd_longitude = "5.3725"
|
527 |
-
# oecd_zoom = "5.6442"
|
528 |
-
# # Create the HTML content with the iframe
|
529 |
-
# iframe_html = f"""
|
530 |
-
# <iframe src="https://localdataportal.oecd.org/maps.html?indicator={oecd_indicator}&topic={oecd_topic}&latitude={oecd_latitude}&longitude={oecd_longitude}&zoom={oecd_zoom}"
|
531 |
-
# width="100%" height="600" frameborder="0" style="border:0;" allowfullscreen></iframe>
|
532 |
-
# """
|
533 |
-
# oecd_textbox = gr.HTML(iframe_html, show_label=False, elem_id="oecd-textbox")
|
534 |
-
|
535 |
-
|
536 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
537 |
|
538 |
-
|
539 |
-
|
540 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
541 |
|
542 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
543 |
|
544 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
545 |
|
|
|
|
|
|
|
|
|
|
|
546 |
|
547 |
-
|
548 |
-
|
549 |
-
|
550 |
-
|
551 |
-
|
552 |
-
|
553 |
|
554 |
-
|
555 |
-
|
556 |
-
|
557 |
-
# multiselect=True,
|
558 |
-
# value=None,
|
559 |
-
# interactive=True,
|
560 |
-
# )
|
561 |
|
562 |
-
|
563 |
-
|
564 |
-
|
565 |
-
|
566 |
-
|
567 |
-
|
568 |
|
|
|
|
|
|
|
569 |
|
570 |
-
|
571 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
572 |
|
|
|
573 |
|
574 |
-
|
|
|
575 |
with gr.Row():
|
576 |
with gr.Column(scale=1):
|
577 |
-
|
578 |
-
|
579 |
-
|
580 |
-
|
581 |
gr.Markdown(
|
582 |
"""
|
583 |
### More info
|
@@ -587,8 +621,7 @@ with gr.Blocks(title="Climate Q&A", css_paths=os.getcwd()+ "/style.css", theme=t
|
|
587 |
### Citation
|
588 |
"""
|
589 |
)
|
590 |
-
with gr.Accordion(CITATION_LABEL,elem_id="citation", open
|
591 |
-
# # Display citation label and text)
|
592 |
gr.Textbox(
|
593 |
value=CITATION_TEXT,
|
594 |
label="",
|
@@ -597,103 +630,45 @@ with gr.Blocks(title="Climate Q&A", css_paths=os.getcwd()+ "/style.css", theme=t
|
|
597 |
lines=len(CITATION_TEXT.split('\n')),
|
598 |
)
|
599 |
|
600 |
-
|
601 |
-
|
602 |
-
def start_chat(query,history,search_only):
|
603 |
-
history = history + [ChatMessage(role="user", content=query)]
|
604 |
-
if not search_only:
|
605 |
-
return (gr.update(interactive = False),gr.update(selected=1),history, [])
|
606 |
-
else:
|
607 |
-
return (gr.update(interactive = False),gr.update(selected=2),history, [])
|
608 |
-
|
609 |
-
def finish_chat():
|
610 |
-
return gr.update(interactive = True,value = "")
|
611 |
|
612 |
-
|
613 |
-
|
614 |
-
|
615 |
-
|
616 |
-
|
617 |
-
def toggle_summary_visibility():
|
618 |
-
global summary_visible
|
619 |
-
summary_visible = not summary_visible
|
620 |
-
return gr.update(visible=summary_visible)
|
621 |
-
|
622 |
-
def toggle_relevant_visibility():
|
623 |
-
global relevant_visible
|
624 |
-
relevant_visible = not relevant_visible
|
625 |
-
return gr.update(visible=relevant_visible)
|
626 |
-
|
627 |
-
|
628 |
-
def change_completion_status(current_state):
|
629 |
-
current_state = 1 - current_state
|
630 |
-
return current_state
|
631 |
|
632 |
-
def update_sources_number_display(sources_textbox, figures_cards, current_graphs, papers_html):
|
633 |
-
sources_number = sources_textbox.count("<h2>")
|
634 |
-
figures_number = figures_cards.count("<h2>")
|
635 |
-
graphs_number = current_graphs.count("<iframe")
|
636 |
-
papers_number = papers_html.count("<h2>")
|
637 |
-
sources_notif_label = f"Sources ({sources_number})"
|
638 |
-
figures_notif_label = f"Figures ({figures_number})"
|
639 |
-
graphs_notif_label = f"Graphs ({graphs_number})"
|
640 |
-
papers_notif_label = f"Papers ({papers_number})"
|
641 |
-
recommended_content_notif_label = f"Recommended content ({figures_number + graphs_number + papers_number})"
|
642 |
-
|
643 |
-
return gr.update(label = recommended_content_notif_label), gr.update(label = sources_notif_label), gr.update(label = figures_notif_label), gr.update(label = graphs_notif_label), gr.update(label = papers_notif_label)
|
644 |
|
645 |
(textbox
|
646 |
-
.submit(start_chat, [textbox, chatbot, search_only],
|
647 |
-
|
648 |
-
|
649 |
-
api_name="start_chat_textbox")
|
650 |
-
.then(chat, [textbox, chatbot, dropdown_audience, dropdown_sources,
|
651 |
-
dropdown_reports, dropdown_external_sources, search_only],
|
652 |
-
[chatbot, sources_textbox, output_query, output_language,
|
653 |
-
new_figures, current_graphs],
|
654 |
-
concurrency_limit=8,
|
655 |
-
api_name="chat_textbox")
|
656 |
-
.then(finish_chat, None, [textbox],
|
657 |
-
api_name="finish_chat_textbox")
|
658 |
)
|
659 |
|
660 |
|
661 |
|
662 |
(examples_hidden
|
663 |
-
.change(start_chat, [examples_hidden,chatbot, search_only], [textbox,tabs,chatbot, sources_raw],queue
|
664 |
-
.then(chat, [examples_hidden,chatbot,dropdown_audience, dropdown_sources,dropdown_reports, dropdown_external_sources, search_only]
|
665 |
-
.then(finish_chat, None, [textbox],api_name
|
666 |
-
# .then(update_sources_number_display, [sources_textbox, figures_cards, current_graphs,papers_html],[tab_sources, tab_figures, tab_graphs, tab_papers] )
|
667 |
)
|
668 |
|
669 |
-
|
670 |
-
def change_sample_questions(key):
|
671 |
-
index = list(QUESTIONS.keys()).index(key)
|
672 |
-
visible_bools = [False] * len(samples)
|
673 |
-
visible_bools[index] = True
|
674 |
-
return [gr.update(visible=visible_bools[i]) for i in range(len(samples))]
|
675 |
-
|
676 |
-
|
677 |
new_figures.change(process_figures, inputs=[sources_raw, new_figures], outputs=[sources_raw, figures_cards, gallery_component])
|
678 |
-
|
679 |
-
# update sources numbers
|
680 |
-
sources_textbox.change(update_sources_number_display, [sources_textbox, figures_cards, current_graphs,papers_html],[tab_recommended_content, tab_sources, tab_figures, tab_graphs, tab_papers])
|
681 |
-
figures_cards.change(update_sources_number_display, [sources_textbox, figures_cards, current_graphs,papers_html],[tab_recommended_content, tab_sources, tab_figures, tab_graphs, tab_papers])
|
682 |
-
current_graphs.change(update_sources_number_display, [sources_textbox, figures_cards, current_graphs,papers_html],[tab_recommended_content, tab_sources, tab_figures, tab_graphs, tab_papers])
|
683 |
-
papers_html.change(update_sources_number_display, [sources_textbox, figures_cards, current_graphs,papers_html],[tab_recommended_content, tab_sources, tab_figures, tab_graphs, tab_papers])
|
684 |
|
685 |
-
#
|
686 |
-
|
|
|
|
|
|
|
687 |
|
688 |
-
#
|
689 |
-
|
690 |
-
examples_hidden.change(find_papers,[examples_hidden,after,dropdown_external_sources], [papers_html,citations_network,papers_summary])
|
691 |
|
692 |
-
#
|
693 |
-
|
|
|
694 |
|
695 |
demo.queue()
|
696 |
-
|
697 |
-
|
698 |
-
|
699 |
demo.launch(ssr_mode=False)
|
|
|
1 |
+
# Import necessary libraries
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
import os
|
3 |
+
import json
|
4 |
import time
|
5 |
import re
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
import base64
|
|
|
7 |
from datetime import datetime
|
8 |
+
from io import BytesIO
|
|
|
|
|
9 |
|
10 |
+
import numpy as np
|
11 |
+
import pandas as pd
|
12 |
+
import gradio as gr
|
13 |
+
from gradio import ChatMessage
|
14 |
from gradio_modal import Modal
|
15 |
+
from sentence_transformers import CrossEncoder
|
16 |
+
from azure.storage.fileshare import ShareServiceClient
|
17 |
|
18 |
+
# Import custom modules
|
19 |
+
from climateqa.engine.embeddings import get_embeddings_function
|
|
|
|
|
|
|
20 |
from climateqa.engine.llm import get_llm
|
21 |
from climateqa.engine.vectorstore import get_pinecone_vectorstore
|
|
|
22 |
from climateqa.engine.reranker import get_reranker
|
|
|
|
|
23 |
from climateqa.sample_questions import QUESTIONS
|
24 |
+
from climateqa.constants import POSSIBLE_REPORTS
|
25 |
from climateqa.utils import get_image_from_azure_blob_storage
|
26 |
from climateqa.engine.graph import make_graph_agent
|
|
|
27 |
from climateqa.engine.chains.retrieve_papers import find_papers
|
28 |
+
from front.utils import serialize_docs, process_figures
|
29 |
+
from climateqa.event_handler import (
|
30 |
+
init_audience,
|
31 |
+
handle_retrieved_documents,
|
32 |
+
stream_answer,
|
33 |
+
handle_retrieved_owid_graphs
|
34 |
+
)
|
35 |
+
from utils import create_user_id
|
36 |
|
37 |
# Load environment variables in local mode
|
38 |
try:
|
|
|
41 |
except Exception as e:
|
42 |
pass
|
43 |
|
|
|
|
|
44 |
# Set up Gradio Theme
|
45 |
theme = gr.themes.Base(
|
46 |
primary_hue="blue",
|
|
|
48 |
font=[gr.themes.GoogleFont("Poppins"), "ui-sans-serif", "system-ui", "sans-serif"],
|
49 |
)
|
50 |
|
51 |
+
# Initialize prompt and system template
|
52 |
+
init_prompt = """
|
53 |
+
Hello, I am ClimateQ&A, a conversational assistant designed to help you understand climate change and biodiversity loss. I will answer your questions by **sifting through the IPCC and IPBES scientific reports**.
|
54 |
+
|
55 |
+
❓ How to use
|
56 |
+
- **Language**: You can ask me your questions in any language.
|
57 |
+
- **Audience**: You can specify your audience (children, general public, experts) to get a more adapted answer.
|
58 |
+
- **Sources**: You can choose to search in the IPCC or IPBES reports, or both.
|
59 |
+
- **Relevant content sources**: You can choose to search for figures, papers, or graphs that can be relevant for your question.
|
60 |
|
61 |
+
⚠️ Limitations
|
62 |
+
*Please note that the AI is not perfect and may sometimes give irrelevant answers. If you are not satisfied with the answer, please ask a more specific question or report your feedback to help us improve the system.*
|
63 |
|
64 |
+
🛈 Information
|
65 |
+
Please note that we log your questions for meta-analysis purposes, so avoid sharing any sensitive or personal information.
|
66 |
|
67 |
+
What do you want to learn ?
|
68 |
+
"""
|
|
|
|
|
69 |
|
70 |
+
# Azure Blob Storage credentials
|
71 |
account_key = os.environ["BLOB_ACCOUNT_KEY"]
|
72 |
if len(account_key) == 86:
|
73 |
account_key += "=="
|
|
|
84 |
|
85 |
user_id = create_user_id()
|
86 |
|
87 |
+
# Citation information
|
88 |
CITATION_LABEL = "BibTeX citation for ClimateQ&A"
|
89 |
CITATION_TEXT = r"""@misc{climateqa,
|
90 |
author={Théo Alves Da Costa, Timothée Bohe},
|
|
|
99 |
}
|
100 |
"""
|
101 |
|
|
|
|
|
102 |
# Create vectorstore and retriever
|
103 |
+
embeddings_function = get_embeddings_function()
|
104 |
+
vectorstore = get_pinecone_vectorstore(embeddings_function, index_name=os.getenv("PINECONE_API_INDEX"))
|
105 |
+
vectorstore_graphs = get_pinecone_vectorstore(embeddings_function, index_name=os.getenv("PINECONE_API_INDEX_OWID"), text_key="description")
|
106 |
|
107 |
llm = get_llm(provider="openai",max_tokens = 1024,temperature = 0.0)
|
108 |
+
reranker = get_reranker("nano")
|
109 |
|
110 |
agent = make_graph_agent(llm=llm, vectorstore_ipcc=vectorstore, vectorstore_graphs=vectorstore_graphs, reranker=reranker)
|
111 |
|
112 |
+
# Function to update modal visibility
|
113 |
def update_config_modal_visibility(config_open):
|
114 |
new_config_visibility_status = not config_open
|
115 |
return gr.update(visible=new_config_visibility_status), new_config_visibility_status
|
116 |
|
117 |
+
# Main chat function
|
118 |
+
async def chat(
|
119 |
+
query: str,
|
120 |
+
history: list[ChatMessage],
|
121 |
+
audience: str,
|
122 |
+
sources: list[str],
|
123 |
+
reports: list[str],
|
124 |
+
relevant_content_sources_selection: list[str],
|
125 |
+
search_only: bool
|
126 |
+
) -> tuple[list, str, str, str, list, str]:
|
127 |
+
"""Process a chat query and return response with relevant sources and visualizations.
|
128 |
+
|
129 |
+
Args:
|
130 |
+
query (str): The user's question
|
131 |
+
history (list): Chat message history
|
132 |
+
audience (str): Target audience type
|
133 |
+
sources (list): Knowledge base sources to search
|
134 |
+
reports (list): Specific reports to search within sources
|
135 |
+
relevant_content_sources_selection (list): Types of content to retrieve (figures, papers, etc)
|
136 |
+
search_only (bool): Whether to only search without generating answer
|
137 |
+
|
138 |
+
Yields:
|
139 |
+
tuple: Contains:
|
140 |
+
- history: Updated chat history
|
141 |
+
- docs_html: HTML of retrieved documents
|
142 |
+
- output_query: Processed query
|
143 |
+
- output_language: Detected language
|
144 |
+
- related_contents: Related content
|
145 |
+
- graphs_html: HTML of relevant graphs
|
146 |
+
"""
|
147 |
+
# Log incoming question
|
148 |
date_now = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
149 |
print(f">> NEW QUESTION ({date_now}) : {query}")
|
150 |
|
151 |
audience_prompt = init_audience(audience)
|
152 |
+
sources = sources or ["IPCC", "IPBES", "IPOS"]
|
153 |
+
reports = reports or []
|
154 |
+
|
155 |
+
# Prepare inputs for agent
|
156 |
+
inputs = {
|
157 |
+
"user_input": query,
|
158 |
+
"audience": audience_prompt,
|
159 |
+
"sources_input": sources,
|
160 |
+
"relevant_content_sources_selection": relevant_content_sources_selection,
|
161 |
+
"search_only": search_only,
|
162 |
+
"reports": reports
|
163 |
+
}
|
164 |
|
165 |
+
# Get streaming events from agent
|
166 |
+
result = agent.astream_events(inputs, version="v1")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
167 |
|
168 |
+
# Initialize state variables
|
169 |
docs = []
|
170 |
related_contents = []
|
171 |
docs_html = ""
|
|
|
174 |
output_keywords = ""
|
175 |
start_streaming = False
|
176 |
graphs_html = ""
|
177 |
+
used_documents = []
|
178 |
+
answer_message_content = ""
|
179 |
|
180 |
+
# Define processing steps
|
181 |
steps_display = {
|
182 |
+
"categorize_intent": ("🔄️ Analyzing user message", True),
|
183 |
+
"transform_query": ("🔄️ Thinking step by step to answer the question", True),
|
184 |
+
"retrieve_documents": ("🔄️ Searching in the knowledge base", False),
|
185 |
}
|
186 |
+
|
|
|
|
|
187 |
try:
|
188 |
+
# Process streaming events
|
189 |
async for event in result:
|
190 |
if "langgraph_node" in event["metadata"]:
|
191 |
node = event["metadata"]["langgraph_node"]
|
192 |
|
193 |
+
# Handle document retrieval
|
194 |
+
if event["event"] == "on_chain_end" and event["name"] == "retrieve_documents" and event["data"]["output"] != None:
|
195 |
+
docs, docs_html, history, used_documents, related_contents = handle_retrieved_documents(
|
196 |
+
event, history, used_documents
|
197 |
+
)
|
198 |
+
|
199 |
+
# Handle intent categorization
|
200 |
+
elif (event["event"] == "on_chain_end" and
|
201 |
+
node == "categorize_intent" and
|
202 |
+
event["name"] == "_write"):
|
203 |
intent = event["data"]["output"]["intent"]
|
204 |
+
output_language = event["data"]["output"].get("language", "English")
|
205 |
+
history[-1].content = f"Language identified: {output_language}\nIntent identified: {intent}"
|
206 |
+
|
207 |
+
# Handle processing steps display
|
208 |
+
elif event["name"] in steps_display and event["event"] == "on_chain_start":
|
|
|
|
|
|
|
209 |
event_description, display_output = steps_display[node]
|
210 |
+
if (not hasattr(history[-1], 'metadata') or
|
211 |
+
history[-1].metadata["title"] != event_description):
|
212 |
+
history.append(ChatMessage(
|
213 |
+
role="assistant",
|
214 |
+
content="",
|
215 |
+
metadata={'title': event_description}
|
216 |
+
))
|
217 |
+
|
218 |
+
# Handle answer streaming
|
219 |
+
elif (event["name"] != "transform_query" and
|
220 |
+
event["event"] == "on_chat_model_stream" and
|
221 |
+
node in ["answer_rag","answer_rag_no_docs", "answer_search", "answer_chitchat"]):
|
222 |
+
history, start_streaming, answer_message_content = stream_answer(
|
223 |
+
history, event, start_streaming, answer_message_content
|
224 |
+
)
|
225 |
|
226 |
+
# Handle graph retrieval
|
227 |
elif event["name"] in ["retrieve_graphs", "retrieve_graphs_ai"] and event["event"] == "on_chain_end":
|
228 |
graphs_html = handle_retrieved_owid_graphs(event, graphs_html)
|
229 |
|
230 |
+
# Handle query transformation
|
231 |
+
if event["name"] == "transform_query" and event["event"] == "on_chain_end":
|
232 |
+
if hasattr(history[-1], "content"):
|
233 |
+
sub_questions = [q["question"] for q in event["data"]["output"]["remaining_questions"]]
|
234 |
+
history[-1].content += "Decompose question into sub-questions:\n\n - " + "\n - ".join(sub_questions)
|
235 |
|
236 |
+
yield history, docs_html, output_query, output_language, related_contents, graphs_html
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
237 |
|
238 |
+
except Exception as e:
|
239 |
+
print(f"Event {event} has failed")
|
240 |
+
raise gr.Error(str(e))
|
241 |
|
242 |
try:
|
243 |
+
# Log interaction to Azure if not in local environment
|
244 |
if os.getenv("GRADIO_ENV") != "local":
|
245 |
timestamp = str(datetime.now().timestamp())
|
|
|
246 |
prompt = history[1]["content"]
|
247 |
logs = {
|
248 |
"user_id": str(user_id),
|
249 |
"prompt": prompt,
|
250 |
"query": prompt,
|
251 |
+
"question": output_query,
|
252 |
+
"sources": sources,
|
253 |
+
"docs": serialize_docs(docs),
|
254 |
"answer": history[-1].content,
|
255 |
"time": timestamp,
|
256 |
}
|
257 |
+
log_on_azure(f"{timestamp}.json", logs, share_client)
|
258 |
except Exception as e:
|
259 |
print(f"Error logging on Azure Blob Storage: {e}")
|
260 |
+
error_msg = f"ClimateQ&A Error: {str(e)[:100]} - The error has been noted, try another question and if the error remains, you can contact us :)"
|
261 |
+
raise gr.Error(error_msg)
|
262 |
|
263 |
yield history, docs_html, output_query, output_language, related_contents, graphs_html
|
264 |
|
265 |
+
# Function to save feedback
|
266 |
def save_feedback(feed: str, user_id):
|
267 |
if len(feed) > 1:
|
268 |
timestamp = str(datetime.now().timestamp())
|
|
|
275 |
log_on_azure(file, logs, share_client)
|
276 |
return "Feedback submitted, thank you!"
|
277 |
|
278 |
+
# Function to log data on Azure
|
|
|
|
|
279 |
def log_on_azure(file, logs, share_client):
|
280 |
logs = json.dumps(logs)
|
281 |
file_client = share_client.get_file_client(file)
|
|
|
290 |
# --------------------------------------------------------------------
|
291 |
|
292 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
293 |
|
294 |
def vote(data: gr.LikeData):
|
295 |
if data.liked:
|
|
|
306 |
return saved_graphs_state, gr.Button("Graph Saved")
|
307 |
|
308 |
|
309 |
+
# Functions to toggle visibility
|
310 |
+
def toggle_summary_visibility():
|
311 |
+
global summary_visible
|
312 |
+
summary_visible = not summary_visible
|
313 |
+
return gr.update(visible=summary_visible)
|
314 |
|
315 |
+
def toggle_relevant_visibility():
|
316 |
+
global relevant_visible
|
317 |
+
relevant_visible = not relevant_visible
|
318 |
+
return gr.update(visible=relevant_visible)
|
|
|
319 |
|
320 |
+
def change_completion_status(current_state):
|
321 |
+
current_state = 1 - current_state
|
322 |
+
return current_state
|
323 |
|
324 |
+
def update_sources_number_display(sources_textbox, figures_cards, current_graphs, papers_html):
|
325 |
+
sources_number = sources_textbox.count("<h2>")
|
326 |
+
figures_number = figures_cards.count("<h2>")
|
327 |
+
graphs_number = current_graphs.count("<iframe")
|
328 |
+
papers_number = papers_html.count("<h2>")
|
329 |
+
sources_notif_label = f"Sources ({sources_number})"
|
330 |
+
figures_notif_label = f"Figures ({figures_number})"
|
331 |
+
graphs_notif_label = f"Graphs ({graphs_number})"
|
332 |
+
papers_notif_label = f"Papers ({papers_number})"
|
333 |
+
recommended_content_notif_label = f"Recommended content ({figures_number + graphs_number + papers_number})"
|
|
|
|
|
|
|
|
|
|
|
334 |
|
335 |
+
return gr.update(label=recommended_content_notif_label), gr.update(label=sources_notif_label), gr.update(label=figures_notif_label), gr.update(label=graphs_notif_label), gr.update(label=papers_notif_label)
|
336 |
|
337 |
+
def change_sample_questions(key):
|
338 |
+
index = list(QUESTIONS.keys()).index(key)
|
339 |
+
visible_bools = [False] * len(samples)
|
340 |
+
visible_bools[index] = True
|
341 |
+
return [gr.update(visible=visible_bools[i]) for i in range(len(samples))]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
342 |
|
343 |
|
|
|
|
|
|
|
|
|
|
|
|
|
344 |
|
345 |
+
# Chat functions
|
346 |
+
def start_chat(query, history, search_only):
|
347 |
+
history = history + [ChatMessage(role="user", content=query)]
|
348 |
+
if not search_only:
|
349 |
+
return (gr.update(interactive=False), gr.update(selected=1), history, [])
|
350 |
+
else:
|
351 |
+
return (gr.update(interactive=False), gr.update(selected=2), history, [])
|
352 |
+
|
353 |
+
def finish_chat():
|
354 |
+
return gr.update(interactive=True, value="")
|
355 |
+
|
356 |
+
# Initialize visibility states
|
357 |
+
summary_visible = False
|
358 |
+
relevant_visible = False
|
359 |
+
|
360 |
+
# UI Layout Components
|
361 |
+
def create_chat_interface():
|
362 |
+
chatbot = gr.Chatbot(
|
363 |
+
value=[ChatMessage(role="assistant", content=init_prompt)],
|
364 |
+
type="messages",
|
365 |
+
show_copy_button=True,
|
366 |
+
show_label=False,
|
367 |
+
elem_id="chatbot",
|
368 |
+
layout="panel",
|
369 |
+
avatar_images=(None, "https://i.ibb.co/YNyd5W2/logo4.png"),
|
370 |
+
max_height="80vh",
|
371 |
+
height="100vh"
|
372 |
+
)
|
373 |
+
|
374 |
+
with gr.Row(elem_id="input-message"):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
375 |
|
376 |
+
textbox = gr.Textbox(
|
377 |
+
placeholder="Ask me anything here!",
|
378 |
+
show_label=False,
|
379 |
+
scale=12,
|
380 |
+
lines=1,
|
381 |
+
interactive=True,
|
382 |
+
elem_id="input-textbox"
|
383 |
+
)
|
384 |
+
|
385 |
+
config_button = gr.Button("", elem_id="config-button")
|
386 |
+
|
387 |
+
return chatbot, textbox, config_button
|
388 |
+
|
389 |
+
def create_examples_tab():
|
390 |
+
examples_hidden = gr.Textbox(visible=False)
|
391 |
+
first_key = list(QUESTIONS.keys())[0]
|
392 |
+
dropdown_samples = gr.Dropdown(
|
393 |
+
choices=QUESTIONS.keys(),
|
394 |
+
value=first_key,
|
395 |
+
interactive=True,
|
396 |
+
label="Select a category of sample questions",
|
397 |
+
elem_id="dropdown-samples"
|
398 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
399 |
|
400 |
+
samples = []
|
401 |
+
for i, key in enumerate(QUESTIONS.keys()):
|
402 |
+
examples_visible = (i == 0)
|
403 |
+
with gr.Row(visible=examples_visible) as group_examples:
|
404 |
+
examples_questions = gr.Examples(
|
405 |
+
examples=QUESTIONS[key],
|
406 |
+
inputs=[examples_hidden],
|
407 |
+
examples_per_page=8,
|
408 |
+
run_on_click=False,
|
409 |
+
elem_id=f"examples{i}",
|
410 |
+
api_name=f"examples{i}"
|
411 |
+
)
|
412 |
+
samples.append(group_examples)
|
413 |
+
|
414 |
+
return examples_hidden, dropdown_samples, samples
|
415 |
|
416 |
+
def create_figures_tab():
|
417 |
+
sources_raw = gr.State()
|
418 |
+
new_figures = gr.State([])
|
419 |
+
used_figures = gr.State([])
|
420 |
+
|
421 |
+
with Modal(visible=False, elem_id="modal_figure_galery") as figure_modal:
|
422 |
+
gallery_component = gr.Gallery(
|
423 |
+
object_fit='scale-down',
|
424 |
+
elem_id="gallery-component",
|
425 |
+
height="80vh"
|
426 |
+
)
|
427 |
+
|
428 |
+
show_full_size_figures = gr.Button(
|
429 |
+
"Show figures in full size",
|
430 |
+
elem_id="show-figures",
|
431 |
+
interactive=True
|
432 |
+
)
|
433 |
+
show_full_size_figures.click(
|
434 |
+
lambda: Modal(visible=True),
|
435 |
+
None,
|
436 |
+
figure_modal
|
437 |
+
)
|
438 |
|
439 |
+
figures_cards = gr.HTML(show_label=False, elem_id="sources-figures")
|
440 |
+
|
441 |
+
return sources_raw, new_figures, used_figures, gallery_component, figures_cards, figure_modal
|
442 |
+
|
443 |
+
def create_papers_tab():
|
444 |
+
with gr.Accordion(
|
445 |
+
visible=True,
|
446 |
+
elem_id="papers-summary-popup",
|
447 |
+
label="See summary of relevant papers",
|
448 |
+
open=False
|
449 |
+
) as summary_popup:
|
450 |
+
papers_summary = gr.Markdown("", visible=True, elem_id="papers-summary")
|
451 |
+
|
452 |
+
with gr.Accordion(
|
453 |
+
visible=True,
|
454 |
+
elem_id="papers-relevant-popup",
|
455 |
+
label="See relevant papers",
|
456 |
+
open=False
|
457 |
+
) as relevant_popup:
|
458 |
+
papers_html = gr.HTML(show_label=False, elem_id="papers-textbox")
|
459 |
+
|
460 |
+
btn_citations_network = gr.Button("Explore papers citations network")
|
461 |
+
with Modal(visible=False) as papers_modal:
|
462 |
+
citations_network = gr.HTML(
|
463 |
+
"<h3>Citations Network Graph</h3>",
|
464 |
+
visible=True,
|
465 |
+
elem_id="papers-citations-network"
|
466 |
+
)
|
467 |
+
btn_citations_network.click(
|
468 |
+
lambda: Modal(visible=True),
|
469 |
+
None,
|
470 |
+
papers_modal
|
471 |
+
)
|
472 |
+
|
473 |
+
return papers_summary, papers_html, citations_network, papers_modal
|
474 |
+
|
475 |
+
def create_config_modal(config_open):
|
476 |
+
with Modal(visible=False, elem_id="modal-config") as config_modal:
|
477 |
+
gr.Markdown("Reminders: You can talk in any language, ClimateQ&A is multi-lingual!")
|
478 |
+
|
479 |
+
dropdown_sources = gr.CheckboxGroup(
|
480 |
+
choices=["IPCC", "IPBES", "IPOS"],
|
481 |
+
label="Select source (by default search in all sources)",
|
482 |
+
value=["IPCC"],
|
483 |
+
interactive=True
|
484 |
+
)
|
485 |
+
|
486 |
+
dropdown_reports = gr.Dropdown(
|
487 |
+
choices=POSSIBLE_REPORTS,
|
488 |
+
label="Or select specific reports",
|
489 |
+
multiselect=True,
|
490 |
+
value=None,
|
491 |
+
interactive=True
|
492 |
+
)
|
493 |
+
|
494 |
+
dropdown_external_sources = gr.CheckboxGroup(
|
495 |
+
choices=["Figures (IPCC/IPBES)", "Papers (OpenAlex)", "Graphs (OurWorldInData)"],
|
496 |
+
label="Select database to search for relevant content",
|
497 |
+
value=["Figures (IPCC/IPBES)"],
|
498 |
+
interactive=True
|
499 |
+
)
|
500 |
+
|
501 |
+
search_only = gr.Checkbox(
|
502 |
+
label="Search only for recommended content without chating",
|
503 |
+
value=False,
|
504 |
+
interactive=True,
|
505 |
+
elem_id="checkbox-chat"
|
506 |
+
)
|
507 |
+
|
508 |
+
dropdown_audience = gr.Dropdown(
|
509 |
+
choices=["Children", "General public", "Experts"],
|
510 |
+
label="Select audience",
|
511 |
+
value="Experts",
|
512 |
+
interactive=True
|
513 |
+
)
|
514 |
+
|
515 |
+
after = gr.Slider(
|
516 |
+
minimum=1950,
|
517 |
+
maximum=2023,
|
518 |
+
step=1,
|
519 |
+
value=1960,
|
520 |
+
label="Publication date",
|
521 |
+
show_label=True,
|
522 |
+
interactive=True,
|
523 |
+
elem_id="date-papers",
|
524 |
+
visible=False
|
525 |
+
)
|
526 |
+
|
527 |
+
output_query = gr.Textbox(
|
528 |
+
label="Query used for retrieval",
|
529 |
+
show_label=True,
|
530 |
+
elem_id="reformulated-query",
|
531 |
+
lines=2,
|
532 |
+
interactive=False,
|
533 |
+
visible=False
|
534 |
+
)
|
535 |
+
|
536 |
+
output_language = gr.Textbox(
|
537 |
+
label="Language",
|
538 |
+
show_label=True,
|
539 |
+
elem_id="language",
|
540 |
+
lines=1,
|
541 |
+
interactive=False,
|
542 |
+
visible=False
|
543 |
+
)
|
544 |
+
|
545 |
+
dropdown_external_sources.change(
|
546 |
+
lambda x: gr.update(visible="Papers (OpenAlex)" in x),
|
547 |
+
inputs=[dropdown_external_sources],
|
548 |
+
outputs=[after]
|
549 |
+
)
|
550 |
+
|
551 |
+
close_config_modal = gr.Button("Validate and Close", elem_id="close-config-modal")
|
552 |
+
close_config_modal.click(
|
553 |
+
fn=update_config_modal_visibility,
|
554 |
+
inputs=[config_open],
|
555 |
+
outputs=[config_modal, config_open]
|
556 |
+
)
|
557 |
+
|
558 |
+
return (config_modal, dropdown_sources, dropdown_reports, dropdown_external_sources,
|
559 |
+
search_only, dropdown_audience, after, output_query, output_language)
|
560 |
|
561 |
+
# Main UI Assembly
|
562 |
+
with gr.Blocks(title="Climate Q&A", css_paths=os.getcwd()+ "/style.css", theme=theme, elem_id="main-component") as demo:
|
563 |
+
# State variables
|
564 |
+
chat_completed_state = gr.State(0)
|
565 |
+
current_graphs = gr.State([])
|
566 |
+
saved_graphs = gr.State({})
|
567 |
+
config_open = gr.State(False)
|
568 |
|
569 |
+
with gr.Tab("ClimateQ&A"):
|
570 |
+
with gr.Row(elem_id="chatbot-row"):
|
571 |
+
# Left column - Chat interface
|
572 |
+
with gr.Column(scale=2):
|
573 |
+
chatbot, textbox, config_button = create_chat_interface()
|
574 |
|
575 |
+
# Right column - Content panels
|
576 |
+
with gr.Column(scale=2, variant="panel", elem_id="right-panel"):
|
577 |
+
with gr.Tabs(elem_id="right_panel_tab") as tabs:
|
578 |
+
# Examples tab
|
579 |
+
with gr.TabItem("Examples", elem_id="tab-examples", id=0):
|
580 |
+
examples_hidden, dropdown_samples, samples = create_examples_tab()
|
581 |
|
582 |
+
# Sources tab
|
583 |
+
with gr.Tab("Sources", elem_id="tab-sources", id=1) as tab_sources:
|
584 |
+
sources_textbox = gr.HTML(show_label=False, elem_id="sources-textbox")
|
|
|
|
|
|
|
|
|
585 |
|
586 |
+
# Recommended content tab
|
587 |
+
with gr.Tab("Recommended content", elem_id="tab-recommended_content", id=2) as tab_recommended_content:
|
588 |
+
with gr.Tabs(elem_id="group-subtabs") as tabs_recommended_content:
|
589 |
+
# Figures subtab
|
590 |
+
with gr.Tab("Figures", elem_id="tab-figures", id=3) as tab_figures:
|
591 |
+
sources_raw, new_figures, used_figures, gallery_component, figures_cards, figure_modal = create_figures_tab()
|
592 |
|
593 |
+
# Papers subtab
|
594 |
+
with gr.Tab("Papers", elem_id="tab-citations", id=4) as tab_papers:
|
595 |
+
papers_summary, papers_html, citations_network, papers_modal = create_papers_tab()
|
596 |
|
597 |
+
# Graphs subtab
|
598 |
+
with gr.Tab("Graphs", elem_id="tab-graphs", id=5) as tab_graphs:
|
599 |
+
graphs_container = gr.HTML(
|
600 |
+
"<h2>There are no graphs to be displayed at the moment. Try asking another question.</h2>",
|
601 |
+
elem_id="graphs-container"
|
602 |
+
)
|
603 |
+
current_graphs.change(
|
604 |
+
lambda x: x,
|
605 |
+
inputs=[current_graphs],
|
606 |
+
outputs=[graphs_container]
|
607 |
+
)
|
608 |
|
609 |
+
|
610 |
|
611 |
+
# Other tabs
|
612 |
+
with gr.Tab("About", elem_classes="max-height other-tabs"):
|
613 |
with gr.Row():
|
614 |
with gr.Column(scale=1):
|
|
|
|
|
|
|
|
|
615 |
gr.Markdown(
|
616 |
"""
|
617 |
### More info
|
|
|
621 |
### Citation
|
622 |
"""
|
623 |
)
|
624 |
+
with gr.Accordion(CITATION_LABEL, elem_id="citation", open=False):
|
|
|
625 |
gr.Textbox(
|
626 |
value=CITATION_TEXT,
|
627 |
label="",
|
|
|
630 |
lines=len(CITATION_TEXT.split('\n')),
|
631 |
)
|
632 |
|
633 |
+
# Event handlers
|
634 |
+
config_modal, dropdown_sources, dropdown_reports, dropdown_external_sources, search_only, dropdown_audience, after, output_query, output_language = create_config_modal(config_open)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
635 |
|
636 |
+
config_button.click(
|
637 |
+
fn=update_config_modal_visibility,
|
638 |
+
inputs=[config_open],
|
639 |
+
outputs=[config_modal, config_open]
|
640 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
641 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
642 |
|
643 |
(textbox
|
644 |
+
.submit(start_chat, [textbox, chatbot, search_only], [textbox, tabs, chatbot, sources_raw], queue=False, api_name="start_chat_textbox")
|
645 |
+
.then(chat, [textbox, chatbot, dropdown_audience, dropdown_sources, dropdown_reports, dropdown_external_sources, search_only], [chatbot, sources_textbox, output_query, output_language, new_figures, current_graphs], concurrency_limit=8, api_name="chat_textbox")
|
646 |
+
.then(finish_chat, None, [textbox], api_name="finish_chat_textbox")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
647 |
)
|
648 |
|
649 |
|
650 |
|
651 |
(examples_hidden
|
652 |
+
.change(start_chat, [examples_hidden, chatbot, search_only], [textbox, tabs, chatbot, sources_raw], queue=False, api_name="start_chat_examples")
|
653 |
+
.then(chat, [examples_hidden, chatbot, dropdown_audience, dropdown_sources, dropdown_reports, dropdown_external_sources, search_only], [chatbot, sources_textbox, output_query, output_language, new_figures, current_graphs], concurrency_limit=8, api_name="chat_textbox")
|
654 |
+
.then(finish_chat, None, [textbox], api_name="finish_chat_examples")
|
|
|
655 |
)
|
656 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
657 |
new_figures.change(process_figures, inputs=[sources_raw, new_figures], outputs=[sources_raw, figures_cards, gallery_component])
|
|
|
|
|
|
|
|
|
|
|
|
|
658 |
|
659 |
+
# Update sources numbers
|
660 |
+
sources_textbox.change(update_sources_number_display, [sources_textbox, figures_cards, current_graphs, papers_html], [tab_recommended_content, tab_sources, tab_figures, tab_graphs, tab_papers])
|
661 |
+
figures_cards.change(update_sources_number_display, [sources_textbox, figures_cards, current_graphs, papers_html], [tab_recommended_content, tab_sources, tab_figures, tab_graphs, tab_papers])
|
662 |
+
current_graphs.change(update_sources_number_display, [sources_textbox, figures_cards, current_graphs, papers_html], [tab_recommended_content, tab_sources, tab_figures, tab_graphs, tab_papers])
|
663 |
+
papers_html.change(update_sources_number_display, [sources_textbox, figures_cards, current_graphs, papers_html], [tab_recommended_content, tab_sources, tab_figures, tab_graphs, tab_papers])
|
664 |
|
665 |
+
# Other questions examples
|
666 |
+
dropdown_samples.change(change_sample_questions, dropdown_samples, samples)
|
|
|
667 |
|
668 |
+
# Search for papers
|
669 |
+
textbox.submit(find_papers, [textbox, after, dropdown_external_sources], [papers_html, citations_network, papers_summary])
|
670 |
+
examples_hidden.change(find_papers, [examples_hidden, after, dropdown_external_sources], [papers_html, citations_network, papers_summary])
|
671 |
|
672 |
demo.queue()
|
673 |
+
|
|
|
|
|
674 |
demo.launch(ssr_mode=False)
|
climateqa/engine/chains/retrieve_documents.py
CHANGED
@@ -213,20 +213,10 @@ async def retrieve_documents(state,config, vectorstore,reranker,llm,rerank_by_qu
|
|
213 |
dict: The updated state containing the retrieved and reranked documents, related content, and remaining questions.
|
214 |
"""
|
215 |
print("---- Retrieve documents ----")
|
|
|
|
|
216 |
|
217 |
-
|
218 |
-
if "documents" in state and state["documents"] is not None:
|
219 |
-
docs = state["documents"]
|
220 |
-
else:
|
221 |
-
docs = []
|
222 |
-
|
223 |
-
# Get the related_content from the state
|
224 |
-
if "related_content" in state and state["related_content"] is not None:
|
225 |
-
related_content = state["related_content"]
|
226 |
-
else:
|
227 |
-
related_content = []
|
228 |
-
|
229 |
-
search_figures = "Figures (IPCC/IPBES)" in state["relevant_content_sources"]
|
230 |
search_only = state["search_only"]
|
231 |
|
232 |
reports = state["reports"]
|
|
|
213 |
dict: The updated state containing the retrieved and reranked documents, related content, and remaining questions.
|
214 |
"""
|
215 |
print("---- Retrieve documents ----")
|
216 |
+
docs = state.get("documents", [])
|
217 |
+
related_content = state.get("related_content", [])
|
218 |
|
219 |
+
search_figures = "Figures (IPCC/IPBES)" in state["relevant_content_sources_selection"]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
220 |
search_only = state["search_only"]
|
221 |
|
222 |
reports = state["reports"]
|
climateqa/engine/chains/retrieve_papers.py
CHANGED
@@ -32,8 +32,8 @@ def generate_keywords(query):
|
|
32 |
return keywords
|
33 |
|
34 |
|
35 |
-
async def find_papers(query,after,
|
36 |
-
if "Papers (OpenAlex)" in
|
37 |
summary = ""
|
38 |
keywords = generate_keywords(query)
|
39 |
df_works = oa.search(keywords,after = after)
|
|
|
32 |
return keywords
|
33 |
|
34 |
|
35 |
+
async def find_papers(query,after, relevant_content_sources_selection, reranker= reranker):
|
36 |
+
if "Papers (OpenAlex)" in relevant_content_sources_selection:
|
37 |
summary = ""
|
38 |
keywords = generate_keywords(query)
|
39 |
df_works = oa.search(keywords,after = after)
|
climateqa/engine/graph.py
CHANGED
@@ -36,12 +36,12 @@ class GraphState(TypedDict):
|
|
36 |
answer: str
|
37 |
audience: str = "experts"
|
38 |
sources_input: List[str] = ["IPCC","IPBES"]
|
39 |
-
|
40 |
sources_auto: bool = True
|
41 |
min_year: int = 1960
|
42 |
max_year: int = None
|
43 |
documents: List[Document]
|
44 |
-
related_contents :
|
45 |
recommended_content : List[Document]
|
46 |
search_only : bool = False
|
47 |
reports : List[str] = []
|
@@ -159,7 +159,7 @@ def make_graph_agent(llm, vectorstore_ipcc, vectorstore_graphs, reranker, thresh
|
|
159 |
)
|
160 |
workflow.add_conditional_edges(
|
161 |
"transform_query",
|
162 |
-
lambda state : "retrieve_graphs" if "Graphs (OurWorldInData)" in state["
|
163 |
make_id_dict(["retrieve_graphs", END])
|
164 |
)
|
165 |
|
|
|
36 |
answer: str
|
37 |
audience: str = "experts"
|
38 |
sources_input: List[str] = ["IPCC","IPBES"]
|
39 |
+
relevant_content_sources_selection: List[str] = ["Figures (IPCC/IPBES)"]
|
40 |
sources_auto: bool = True
|
41 |
min_year: int = 1960
|
42 |
max_year: int = None
|
43 |
documents: List[Document]
|
44 |
+
related_contents : List[Document]
|
45 |
recommended_content : List[Document]
|
46 |
search_only : bool = False
|
47 |
reports : List[str] = []
|
|
|
159 |
)
|
160 |
workflow.add_conditional_edges(
|
161 |
"transform_query",
|
162 |
+
lambda state : "retrieve_graphs" if "Graphs (OurWorldInData)" in state["relevant_content_sources_selection"] else END,
|
163 |
make_id_dict(["retrieve_graphs", END])
|
164 |
)
|
165 |
|
style.css
CHANGED
@@ -1,13 +1,28 @@
|
|
1 |
-
|
2 |
/* :root {
|
3 |
--user-image: url('https://ih1.redbubble.net/image.4776899543.6215/st,small,507x507-pad,600x600,f8f8f8.jpg');
|
4 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
-
|
7 |
-
|
8 |
-
padding
|
9 |
-
padding-right: 0px;
|
10 |
}
|
|
|
11 |
#group-subtabs {
|
12 |
/* display: block; */
|
13 |
position : sticky;
|
@@ -16,66 +31,97 @@
|
|
16 |
|
17 |
}
|
18 |
|
|
|
|
|
|
|
19 |
|
20 |
-
|
21 |
-
|
22 |
-
font-size: 16px;
|
23 |
font-weight: bold;
|
24 |
-
|
|
|
25 |
|
|
|
|
|
26 |
}
|
27 |
|
28 |
-
|
29 |
-
|
30 |
-
font-size: 16px;
|
31 |
-
font-weight: bold;
|
32 |
-
text-align: center;
|
33 |
}
|
34 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
|
|
|
|
|
|
|
36 |
|
37 |
-
|
38 |
-
|
39 |
-
font-size: 16px;
|
40 |
font-weight: bold;
|
41 |
-
|
42 |
-
|
43 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
text-align: left;
|
45 |
-
|
46 |
}
|
47 |
|
|
|
|
|
|
|
48 |
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
}
|
53 |
|
54 |
-
|
55 |
-
|
56 |
-
max-height: 95vh !important;
|
57 |
}
|
58 |
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
border-radius: 4px;
|
64 |
-
color: #333333;
|
65 |
-
cursor: pointer;
|
66 |
-
width: 100%;
|
67 |
-
text-align: center;
|
68 |
}
|
69 |
|
70 |
-
|
71 |
-
|
72 |
-
height: 100%;
|
73 |
-
object-fit: cover;
|
74 |
-
border-radius: 50%;
|
75 |
-
padding: 0px;
|
76 |
-
margin: 0px;
|
77 |
}
|
78 |
|
|
|
79 |
.warning-box {
|
80 |
background-color: #fff3cd;
|
81 |
border: 1px solid #ffeeba;
|
@@ -85,32 +131,20 @@ button#show-figures{
|
|
85 |
color: #856404;
|
86 |
display: inline-block;
|
87 |
margin-bottom: 15px;
|
88 |
-
|
89 |
-
|
90 |
|
91 |
.tip-box {
|
92 |
background-color: #f0f9ff;
|
93 |
border: 1px solid #80d4fa;
|
94 |
border-radius: 4px;
|
95 |
-
margin
|
96 |
padding: 15px 20px;
|
97 |
font-size: 14px;
|
98 |
display: inline-block;
|
99 |
-
margin-bottom: 15px;
|
100 |
width: auto;
|
101 |
-
color:black !important;
|
102 |
-
}
|
103 |
-
|
104 |
-
body.dark .warning-box * {
|
105 |
-
color:black !important;
|
106 |
}
|
107 |
|
108 |
-
|
109 |
-
body.dark .tip-box * {
|
110 |
-
color:black !important;
|
111 |
-
}
|
112 |
-
|
113 |
-
|
114 |
.tip-box-title {
|
115 |
font-weight: bold;
|
116 |
font-size: 14px;
|
@@ -122,116 +156,128 @@ body.dark .tip-box * {
|
|
122 |
margin-right: 5px;
|
123 |
}
|
124 |
|
125 |
-
|
126 |
-
|
127 |
-
#
|
128 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
129 |
}
|
130 |
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
}
|
135 |
-
.card-content img {
|
136 |
-
display: block;
|
137 |
-
margin: auto;
|
138 |
-
max-width: 100%; /* Ensures the image is responsive */
|
139 |
-
height: auto;
|
140 |
}
|
141 |
|
142 |
-
|
143 |
-
|
144 |
-
|
|
|
|
|
|
|
|
|
145 |
}
|
146 |
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
}
|
151 |
|
|
|
|
|
|
|
|
|
152 |
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
flex-direction: column;
|
160 |
-
margin:20px;
|
161 |
}
|
162 |
|
163 |
-
.
|
164 |
-
|
|
|
|
|
165 |
}
|
166 |
|
167 |
-
.
|
168 |
-
font-size:
|
169 |
-
font-
|
170 |
-
|
171 |
-
margin-top:0px !important;
|
172 |
-
color:#dc2626!important;;
|
173 |
}
|
174 |
|
175 |
-
|
176 |
-
|
177 |
-
|
|
|
|
|
178 |
}
|
179 |
|
180 |
-
.
|
181 |
-
background-color: #
|
182 |
-
|
183 |
padding: 10px;
|
|
|
|
|
184 |
display: flex;
|
185 |
-
|
186 |
align-items: center;
|
|
|
|
|
187 |
}
|
188 |
|
189 |
-
.
|
190 |
-
|
191 |
-
|
192 |
-
|
|
|
|
|
|
|
|
|
|
|
193 |
}
|
194 |
|
195 |
-
.
|
196 |
-
display:
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
|
|
|
|
|
|
201 |
}
|
202 |
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
/* background-color:#7494b0 !important; */
|
207 |
-
border:none;
|
208 |
-
/* color:white!important; */
|
209 |
}
|
210 |
|
211 |
-
|
212 |
-
|
213 |
-
border:none;
|
214 |
}
|
215 |
|
216 |
-
|
217 |
-
|
218 |
-
background: #93c5fd !important;
|
219 |
}
|
220 |
|
221 |
-
|
222 |
-
|
223 |
}
|
224 |
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
}
|
230 |
-
#modal-config .modal-container{
|
231 |
-
margin: 0px;
|
232 |
-
padding: 0px;
|
233 |
}
|
234 |
-
|
|
|
235 |
#modal-config {
|
236 |
position: fixed;
|
237 |
top: 0;
|
@@ -244,28 +290,23 @@ label.selected{
|
|
244 |
padding: 15px;
|
245 |
transform: none;
|
246 |
}
|
247 |
-
|
248 |
-
|
|
|
|
|
249 |
}
|
250 |
|
251 |
-
|
252 |
-
|
253 |
-
|
254 |
-
|
255 |
-
} */
|
256 |
|
257 |
-
#modal-config .
|
258 |
-
|
259 |
-
top: 100%;
|
260 |
-
left: 0;
|
261 |
-
/* min-height: 100px; */
|
262 |
-
height: 100%;
|
263 |
-
/* margin-top: 0; */
|
264 |
-
z-index: 9999;
|
265 |
-
pointer-events: auto;
|
266 |
-
height: 200px;
|
267 |
}
|
268 |
-
|
|
|
|
|
269 |
background: none;
|
270 |
border: none;
|
271 |
padding: 8px;
|
@@ -288,155 +329,231 @@ label.selected{
|
|
288 |
background-color: rgba(0, 0, 0, 0.1);
|
289 |
}
|
290 |
|
291 |
-
|
292 |
-
|
293 |
-
|
294 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
295 |
border: none;
|
296 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
297 |
cursor: pointer;
|
298 |
-
width:
|
299 |
-
height: 40px;
|
300 |
-
display: flex;
|
301 |
-
align-items: center;
|
302 |
-
justify-content: center;
|
303 |
-
border-radius: 50%;
|
304 |
-
transition: background-color 0.2s;
|
305 |
-
font-size: 20px;
|
306 |
text-align: center;
|
307 |
}
|
308 |
-
|
309 |
-
|
|
|
|
|
310 |
}
|
311 |
|
|
|
|
|
|
|
|
|
312 |
|
|
|
|
|
|
|
|
|
313 |
|
314 |
-
|
315 |
-
|
316 |
-
|
317 |
-
|
318 |
-
max-height: 80vh;
|
319 |
-
} */
|
320 |
|
321 |
-
|
322 |
-
|
323 |
-
|
324 |
-
|
325 |
-
|
326 |
-
height:calc(100vh - 170px) !important;
|
327 |
-
max-height:calc(100vh - 170px) !important;
|
328 |
|
329 |
-
|
|
|
|
|
|
|
|
|
330 |
|
|
|
|
|
|
|
|
|
331 |
|
332 |
-
|
333 |
-
|
334 |
-
|
335 |
-
overflow-y: scroll !important;
|
336 |
-
/* overflow-y: auto; */
|
337 |
-
}
|
338 |
|
339 |
-
|
340 |
-
|
341 |
-
|
342 |
-
|
343 |
-
|
344 |
-
div#graphs-container{
|
345 |
-
height:calc(100vh - 210px) !important;
|
346 |
-
overflow-y: scroll !important;
|
347 |
-
}
|
348 |
|
349 |
-
|
350 |
-
|
351 |
-
|
352 |
-
|
353 |
-
}
|
354 |
|
355 |
-
|
356 |
-
|
357 |
-
|
358 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
359 |
}
|
360 |
|
361 |
-
div#tab-
|
362 |
-
|
363 |
-
|
|
|
364 |
overflow-y: scroll !important;
|
365 |
}
|
366 |
|
367 |
-
div#
|
368 |
-
|
|
|
|
|
|
|
369 |
overflow-y: scroll !important;
|
370 |
-
/* overflow-y: auto !important; */
|
371 |
}
|
372 |
|
373 |
-
|
374 |
-
|
375 |
-
contain: size layout;
|
376 |
-
overflow: hidden;
|
377 |
}
|
378 |
|
379 |
-
|
380 |
-
|
381 |
-
|
382 |
}
|
383 |
-
/*
|
384 |
|
385 |
-
|
386 |
-
.max-height{
|
387 |
-
height:calc(100vh - 90px) !important;
|
388 |
-
max-height:calc(100vh - 90px) !important;
|
389 |
overflow-y: auto;
|
|
|
390 |
}
|
391 |
-
*/
|
392 |
-
|
393 |
}
|
394 |
|
395 |
-
|
396 |
-
visibility: hidden;
|
397 |
-
display:none !important;
|
398 |
-
}
|
399 |
-
|
400 |
-
|
401 |
@media screen and (max-width: 767px) {
|
402 |
-
|
403 |
-
|
404 |
-
div#chatbot{
|
405 |
-
height:500px !important;
|
406 |
}
|
407 |
|
408 |
-
#submit-button{
|
409 |
-
padding:
|
410 |
min-width: 80px;
|
411 |
}
|
412 |
|
413 |
-
/* This will hide all list items */
|
414 |
div.tab-nav button {
|
415 |
display: none !important;
|
416 |
}
|
417 |
|
418 |
-
|
419 |
-
div.tab-nav button:first-child {
|
420 |
-
display: block !important;
|
421 |
-
}
|
422 |
-
|
423 |
-
/* This will show only the first list item */
|
424 |
div.tab-nav button:nth-child(2) {
|
425 |
display: block !important;
|
426 |
}
|
427 |
-
|
428 |
-
#right-panel button{
|
429 |
display: block !important;
|
430 |
}
|
431 |
|
432 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
433 |
}
|
434 |
|
|
|
435 |
@media (prefers-color-scheme: dark) {
|
436 |
-
.card{
|
437 |
background-color: #374151;
|
438 |
}
|
439 |
-
|
|
|
440 |
background-color: rgb(55, 65, 81) !important;
|
441 |
}
|
442 |
|
@@ -444,294 +561,48 @@ footer {
|
|
444 |
background-color: #404652;
|
445 |
}
|
446 |
|
447 |
-
.container > .wrap{
|
448 |
background-color: #374151 !important;
|
449 |
-
color:white !important;
|
450 |
-
}
|
451 |
-
.card-content h2{
|
452 |
-
color:#e7754f !important;
|
453 |
}
|
454 |
-
|
455 |
-
|
456 |
-
|
457 |
}
|
|
|
458 |
.card-footer span {
|
459 |
-
color:white !important;
|
460 |
}
|
461 |
-
|
462 |
-
}
|
463 |
-
|
464 |
-
|
465 |
-
.doc-ref{
|
466 |
-
color:#dc2626!important;
|
467 |
-
margin-right:1px;
|
468 |
-
}
|
469 |
-
|
470 |
-
.tabitem{
|
471 |
-
border:none !important;
|
472 |
-
}
|
473 |
-
|
474 |
-
.other-tabs > div{
|
475 |
-
padding-left:40px;
|
476 |
-
padding-right:40px;
|
477 |
-
padding-top:10px;
|
478 |
-
}
|
479 |
-
|
480 |
-
.gallery-item > div{
|
481 |
-
white-space: normal !important; /* Allow the text to wrap */
|
482 |
-
word-break: break-word !important; /* Break words to prevent overflow */
|
483 |
-
overflow-wrap: break-word !important; /* Break long words if necessary */
|
484 |
-
}
|
485 |
-
|
486 |
-
span.chatbot > p > img{
|
487 |
-
margin-top:40px !important;
|
488 |
-
max-height: none !important;
|
489 |
-
max-width: 80% !important;
|
490 |
-
border-radius:0px !important;
|
491 |
-
}
|
492 |
-
|
493 |
-
|
494 |
-
.chatbot-caption{
|
495 |
-
font-size:11px;
|
496 |
-
font-style:italic;
|
497 |
-
color:#508094;
|
498 |
-
}
|
499 |
-
|
500 |
-
.ai-generated{
|
501 |
-
font-size:11px!important;
|
502 |
-
font-style:italic;
|
503 |
-
color:#73b8d4 !important;
|
504 |
-
}
|
505 |
|
506 |
-
.
|
507 |
-
|
508 |
-
|
509 |
-
|
510 |
-
|
511 |
-
|
512 |
-
.tab-nav > button.selected{
|
513 |
-
color:#4b8ec3;
|
514 |
-
font-weight:bold;
|
515 |
-
border:none;
|
516 |
-
}
|
517 |
-
|
518 |
-
.tab-nav{
|
519 |
-
border:none !important;
|
520 |
-
}
|
521 |
-
|
522 |
-
#input-textbox > label > textarea{
|
523 |
-
border-radius:40px;
|
524 |
-
padding-left:30px;
|
525 |
-
resize:none;
|
526 |
-
}
|
527 |
-
|
528 |
-
#input-message > div{
|
529 |
-
border:none;
|
530 |
-
}
|
531 |
-
|
532 |
-
#dropdown-samples{
|
533 |
-
|
534 |
-
background:none !important;
|
535 |
-
|
536 |
-
}
|
537 |
-
|
538 |
-
#dropdown-samples > .container > .wrap{
|
539 |
-
background-color:white;
|
540 |
-
}
|
541 |
-
|
542 |
-
|
543 |
-
#tab-examples > div > .form{
|
544 |
-
border:none;
|
545 |
-
background:none !important;
|
546 |
-
}
|
547 |
|
548 |
-
.
|
549 |
-
|
|
|
550 |
}
|
551 |
|
552 |
-
|
553 |
-
|
554 |
-
position: relative;
|
555 |
-
display:inline-block;
|
556 |
-
margin-bottom: 10px;
|
557 |
-
}
|
558 |
-
|
559 |
-
.dropdown-toggle {
|
560 |
-
background-color: #f2f2f2;
|
561 |
-
color: black;
|
562 |
-
padding: 10px;
|
563 |
-
font-size: 16px;
|
564 |
-
cursor: pointer;
|
565 |
-
display: block;
|
566 |
-
width: 400px; /* Adjust width as needed */
|
567 |
-
position: relative;
|
568 |
-
display: flex;
|
569 |
-
align-items: center; /* Vertically center the contents */
|
570 |
-
justify-content: left;
|
571 |
-
}
|
572 |
-
|
573 |
-
.dropdown-toggle .caret {
|
574 |
-
content: "";
|
575 |
-
position: absolute;
|
576 |
-
right: 10px;
|
577 |
-
top: 50%;
|
578 |
-
border-left: 5px solid transparent;
|
579 |
-
border-right: 5px solid transparent;
|
580 |
-
border-top: 5px solid black;
|
581 |
-
transform: translateY(-50%);
|
582 |
-
}
|
583 |
-
|
584 |
-
input[type="checkbox"] {
|
585 |
-
display: none !important;
|
586 |
-
}
|
587 |
-
|
588 |
-
input[type="checkbox"]:checked + .dropdown-content {
|
589 |
display: block;
|
590 |
-
}
|
591 |
-
|
592 |
-
#checkbox-chat input[type="checkbox"] {
|
593 |
-
display: flex !important;
|
594 |
-
}
|
595 |
-
|
596 |
-
.dropdown-content {
|
597 |
-
display: none;
|
598 |
position: absolute;
|
599 |
-
background
|
600 |
-
|
601 |
-
|
602 |
-
|
603 |
-
|
604 |
-
|
605 |
-
|
606 |
-
|
607 |
-
|
608 |
-
display: block;
|
609 |
-
}
|
610 |
-
|
611 |
-
input[type="checkbox"]:checked + .dropdown-toggle .caret {
|
612 |
-
border-top: 0;
|
613 |
-
border-bottom: 5px solid black;
|
614 |
-
}
|
615 |
-
|
616 |
-
.loader {
|
617 |
-
border: 1px solid #d0d0d0 !important; /* Light grey background */
|
618 |
-
border-top: 1px solid #db3434 !important; /* Blue color */
|
619 |
-
border-right: 1px solid #3498db !important; /* Blue color */
|
620 |
border-radius: 50%;
|
621 |
-
|
622 |
-
|
623 |
-
|
624 |
-
display:inline-block;
|
625 |
-
margin-right:10px !important;
|
626 |
-
}
|
627 |
-
|
628 |
-
.checkmark{
|
629 |
-
color:green !important;
|
630 |
-
font-size:18px;
|
631 |
-
margin-right:10px !important;
|
632 |
-
}
|
633 |
-
|
634 |
-
@keyframes spin {
|
635 |
-
0% { transform: rotate(0deg); }
|
636 |
-
100% { transform: rotate(360deg); }
|
637 |
-
}
|
638 |
-
|
639 |
-
|
640 |
-
.relevancy-score{
|
641 |
-
margin-top:10px !important;
|
642 |
-
font-size:10px !important;
|
643 |
-
font-style:italic;
|
644 |
-
}
|
645 |
-
|
646 |
-
.score-green{
|
647 |
-
color:green !important;
|
648 |
-
}
|
649 |
-
|
650 |
-
.score-orange{
|
651 |
-
color:orange !important;
|
652 |
-
}
|
653 |
-
|
654 |
-
.score-red{
|
655 |
-
color:red !important;
|
656 |
-
}
|
657 |
-
|
658 |
-
/* Mobile specific adjustments */
|
659 |
-
@media screen and (max-width: 767px) {
|
660 |
-
div#tab-recommended_content {
|
661 |
-
max-height: 50vh; /* Reduce height for smaller screens */
|
662 |
-
overflow-y: auto;
|
663 |
-
}
|
664 |
-
}
|
665 |
-
|
666 |
-
/* Additional style for scrollable tab content */
|
667 |
-
div#tab-saved-graphs {
|
668 |
-
overflow-y: auto; /* Enable vertical scrolling */
|
669 |
-
max-height: 80vh; /* Adjust height as needed */
|
670 |
-
}
|
671 |
-
|
672 |
-
/* Mobile specific adjustments */
|
673 |
-
@media screen and (max-width: 767px) {
|
674 |
-
div#tab-saved-graphs {
|
675 |
-
max-height: 50vh; /* Reduce height for smaller screens */
|
676 |
-
overflow-y: auto;
|
677 |
-
}
|
678 |
-
}
|
679 |
-
.message-buttons-left.panel.message-buttons.with-avatar {
|
680 |
-
display: none;
|
681 |
-
}
|
682 |
-
|
683 |
-
|
684 |
-
/* Specific fixes for Hugging Face Space iframe */
|
685 |
-
.h-full {
|
686 |
-
height: auto !important;
|
687 |
-
min-height: 0 !important;
|
688 |
}
|
689 |
|
690 |
-
|
691 |
-
|
692 |
-
max-height: 100vh !important;
|
693 |
-
overflow: hidden;
|
694 |
}
|
695 |
-
|
696 |
-
|
697 |
-
/* Mobile specific modal configuration */
|
698 |
-
@media screen and (max-width: 767px) {
|
699 |
-
#modal-config {
|
700 |
-
width: 100%; /* Full width on mobile */
|
701 |
-
height: 100vh;
|
702 |
-
left: 0;
|
703 |
-
top: 0;
|
704 |
-
padding: 10px; /* Reduced padding for mobile */
|
705 |
-
}
|
706 |
-
|
707 |
-
#modal-config .block.modal-block.padded {
|
708 |
-
padding-top: 15px; /* Reduced top padding */
|
709 |
-
height: 100vh;
|
710 |
-
overflow-y: auto; /* Enable scrolling */
|
711 |
-
}
|
712 |
-
|
713 |
-
#modal-config .modal-container {
|
714 |
-
width: 100%;
|
715 |
-
height: 100%;
|
716 |
-
}
|
717 |
-
|
718 |
-
/* Show close button on mobile */
|
719 |
-
#modal-config .close {
|
720 |
-
display: block;
|
721 |
-
position: absolute;
|
722 |
-
top: 10px;
|
723 |
-
right: 10px;
|
724 |
-
z-index: 1001;
|
725 |
-
padding: 8px;
|
726 |
-
font-size: 24px;
|
727 |
-
background: none;
|
728 |
-
border: none;
|
729 |
-
cursor: pointer;
|
730 |
-
}
|
731 |
-
|
732 |
-
/* Ensure modal content is scrollable on mobile */
|
733 |
-
#modal-config .modal .wrap ul {
|
734 |
-
max-height: calc(100vh - 60px); /* Account for header space */
|
735 |
-
overflow-y: auto;
|
736 |
-
}
|
737 |
-
}
|
|
|
1 |
+
/* Root Variables */
|
2 |
/* :root {
|
3 |
--user-image: url('https://ih1.redbubble.net/image.4776899543.6215/st,small,507x507-pad,600x600,f8f8f8.jpg');
|
4 |
+
} */
|
5 |
+
|
6 |
+
/* Layout & Container Styles */
|
7 |
+
.gradio-container {
|
8 |
+
width: 100% !important;
|
9 |
+
max-width: 100% !important;
|
10 |
+
}
|
11 |
+
|
12 |
+
main.flex.flex-1.flex-col {
|
13 |
+
max-height: 95vh !important;
|
14 |
+
}
|
15 |
+
|
16 |
+
.main-component {
|
17 |
+
contain: size layout;
|
18 |
+
overflow: hidden;
|
19 |
+
}
|
20 |
|
21 |
+
/* Tab Styles */
|
22 |
+
#tab-recommended_content {
|
23 |
+
padding: 0;
|
|
|
24 |
}
|
25 |
+
|
26 |
#group-subtabs {
|
27 |
/* display: block; */
|
28 |
position : sticky;
|
|
|
31 |
|
32 |
}
|
33 |
|
34 |
+
.tab-nav {
|
35 |
+
border: none !important;
|
36 |
+
}
|
37 |
|
38 |
+
.tab-nav > button.selected {
|
39 |
+
color: #4b8ec3;
|
|
|
40 |
font-weight: bold;
|
41 |
+
border: none;
|
42 |
+
}
|
43 |
|
44 |
+
.tabitem {
|
45 |
+
border: none !important;
|
46 |
}
|
47 |
|
48 |
+
.other-tabs > div {
|
49 |
+
padding: 40px 40px 10px;
|
|
|
|
|
|
|
50 |
}
|
51 |
|
52 |
+
/* Card Styles */
|
53 |
+
.card {
|
54 |
+
background-color: white;
|
55 |
+
border-radius: 10px;
|
56 |
+
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
|
57 |
+
overflow: hidden;
|
58 |
+
display: flex;
|
59 |
+
flex-direction: column;
|
60 |
+
margin: 20px;
|
61 |
+
}
|
62 |
|
63 |
+
.card-content {
|
64 |
+
padding: 20px;
|
65 |
+
}
|
66 |
|
67 |
+
.card-content h2 {
|
68 |
+
font-size: 14px !important;
|
|
|
69 |
font-weight: bold;
|
70 |
+
margin: 0 0 10px !important;
|
71 |
+
color: #dc2626 !important;
|
72 |
+
}
|
73 |
+
|
74 |
+
.card-content p {
|
75 |
+
font-size: 12px;
|
76 |
+
margin-bottom: 0;
|
77 |
+
}
|
78 |
+
|
79 |
+
.card-content img {
|
80 |
+
display: block;
|
81 |
+
margin: auto;
|
82 |
+
max-width: 100%;
|
83 |
+
height: auto;
|
84 |
+
}
|
85 |
+
|
86 |
+
.card-footer {
|
87 |
+
background-color: #f4f4f4;
|
88 |
+
font-size: 10px;
|
89 |
+
padding: 10px;
|
90 |
+
display: flex;
|
91 |
+
justify-content: space-between;
|
92 |
+
align-items: center;
|
93 |
+
}
|
94 |
+
|
95 |
+
.card-footer span {
|
96 |
+
flex-grow: 1;
|
97 |
text-align: left;
|
98 |
+
color: #999 !important;
|
99 |
}
|
100 |
|
101 |
+
.card-image > .card-content {
|
102 |
+
background-color: #f1f7fa;
|
103 |
+
}
|
104 |
|
105 |
+
/* Message & Chat Styles */
|
106 |
+
.message {
|
107 |
+
font-size: 14px !important;
|
108 |
}
|
109 |
|
110 |
+
.message.user, .message.bot {
|
111 |
+
border: none;
|
|
|
112 |
}
|
113 |
|
114 |
+
#input-textbox > label > textarea {
|
115 |
+
border-radius: 40px;
|
116 |
+
padding-left: 30px;
|
117 |
+
resize: none;
|
|
|
|
|
|
|
|
|
|
|
118 |
}
|
119 |
|
120 |
+
#input-message > div {
|
121 |
+
border: none;
|
|
|
|
|
|
|
|
|
|
|
122 |
}
|
123 |
|
124 |
+
/* Alert Boxes */
|
125 |
.warning-box {
|
126 |
background-color: #fff3cd;
|
127 |
border: 1px solid #ffeeba;
|
|
|
131 |
color: #856404;
|
132 |
display: inline-block;
|
133 |
margin-bottom: 15px;
|
134 |
+
}
|
|
|
135 |
|
136 |
.tip-box {
|
137 |
background-color: #f0f9ff;
|
138 |
border: 1px solid #80d4fa;
|
139 |
border-radius: 4px;
|
140 |
+
margin: 20px 0 15px;
|
141 |
padding: 15px 20px;
|
142 |
font-size: 14px;
|
143 |
display: inline-block;
|
|
|
144 |
width: auto;
|
145 |
+
color: black !important;
|
|
|
|
|
|
|
|
|
146 |
}
|
147 |
|
|
|
|
|
|
|
|
|
|
|
|
|
148 |
.tip-box-title {
|
149 |
font-weight: bold;
|
150 |
font-size: 14px;
|
|
|
156 |
margin-right: 5px;
|
157 |
}
|
158 |
|
159 |
+
/* Loader Animation */
|
160 |
+
.loader {
|
161 |
+
border: 1px solid #d0d0d0 !important;
|
162 |
+
border-top: 1px solid #db3434 !important;
|
163 |
+
border-right: 1px solid #3498db !important;
|
164 |
+
border-radius: 50%;
|
165 |
+
width: 20px;
|
166 |
+
height: 20px;
|
167 |
+
animation: spin 2s linear infinite;
|
168 |
+
display: inline-block;
|
169 |
+
margin-right: 10px !important;
|
170 |
}
|
171 |
|
172 |
+
@keyframes spin {
|
173 |
+
0% { transform: rotate(0deg); }
|
174 |
+
100% { transform: rotate(360deg); }
|
|
|
|
|
|
|
|
|
|
|
|
|
175 |
}
|
176 |
|
177 |
+
/* PDF Link Styles */
|
178 |
+
.pdf-link {
|
179 |
+
display: inline-flex;
|
180 |
+
align-items: center;
|
181 |
+
margin-left: auto;
|
182 |
+
text-decoration: none!important;
|
183 |
+
font-size: 14px;
|
184 |
}
|
185 |
|
186 |
+
/* Document Reference Styles */
|
187 |
+
.doc-ref sup {
|
188 |
+
color: #dc2626!important;
|
189 |
}
|
190 |
|
191 |
+
.doc-ref {
|
192 |
+
color: #dc2626!important;
|
193 |
+
margin-right: 1px;
|
194 |
+
}
|
195 |
|
196 |
+
/* Chatbot & Image Styles */
|
197 |
+
span.chatbot > p > img {
|
198 |
+
margin-top: 40px !important;
|
199 |
+
max-height: none !important;
|
200 |
+
max-width: 80% !important;
|
201 |
+
border-radius: 0px !important;
|
|
|
|
|
202 |
}
|
203 |
|
204 |
+
.chatbot-caption {
|
205 |
+
font-size: 11px;
|
206 |
+
font-style: italic;
|
207 |
+
color: #508094;
|
208 |
}
|
209 |
|
210 |
+
.ai-generated {
|
211 |
+
font-size: 11px!important;
|
212 |
+
font-style: italic;
|
213 |
+
color: #73b8d4 !important;
|
|
|
|
|
214 |
}
|
215 |
|
216 |
+
/* Dropdown Styles */
|
217 |
+
.dropdown {
|
218 |
+
position: relative;
|
219 |
+
display: inline-block;
|
220 |
+
margin-bottom: 10px;
|
221 |
}
|
222 |
|
223 |
+
.dropdown-toggle {
|
224 |
+
background-color: #f2f2f2;
|
225 |
+
color: black;
|
226 |
padding: 10px;
|
227 |
+
font-size: 16px;
|
228 |
+
cursor: pointer;
|
229 |
display: flex;
|
230 |
+
width: 400px;
|
231 |
align-items: center;
|
232 |
+
justify-content: left;
|
233 |
+
position: relative;
|
234 |
}
|
235 |
|
236 |
+
.dropdown-toggle .caret {
|
237 |
+
content: "";
|
238 |
+
position: absolute;
|
239 |
+
right: 10px;
|
240 |
+
top: 50%;
|
241 |
+
border-left: 5px solid transparent;
|
242 |
+
border-right: 5px solid transparent;
|
243 |
+
border-top: 5px solid black;
|
244 |
+
transform: translateY(-50%);
|
245 |
}
|
246 |
|
247 |
+
.dropdown-content {
|
248 |
+
display: none;
|
249 |
+
position: absolute;
|
250 |
+
background-color: #f9f9f9;
|
251 |
+
min-width: 300px;
|
252 |
+
box-shadow: 0 8px 16px 0 rgba(0,0,0,0.2);
|
253 |
+
z-index: 1;
|
254 |
+
padding: 12px;
|
255 |
+
border: 1px solid #ccc;
|
256 |
}
|
257 |
|
258 |
+
/* Checkbox Styles */
|
259 |
+
input[type="checkbox"] {
|
260 |
+
display: none !important;
|
|
|
|
|
|
|
261 |
}
|
262 |
|
263 |
+
#checkbox-chat input[type="checkbox"] {
|
264 |
+
display: flex !important;
|
|
|
265 |
}
|
266 |
|
267 |
+
input[type="checkbox"]:checked + .dropdown-content {
|
268 |
+
display: block;
|
|
|
269 |
}
|
270 |
|
271 |
+
input[type="checkbox"]:checked + .dropdown-toggle + .dropdown-content {
|
272 |
+
display: block;
|
273 |
}
|
274 |
|
275 |
+
input[type="checkbox"]:checked + .dropdown-toggle .caret {
|
276 |
+
border-top: 0;
|
277 |
+
border-bottom: 5px solid black;
|
|
|
|
|
|
|
|
|
|
|
278 |
}
|
279 |
+
|
280 |
+
/* Modal Styles */
|
281 |
#modal-config {
|
282 |
position: fixed;
|
283 |
top: 0;
|
|
|
290 |
padding: 15px;
|
291 |
transform: none;
|
292 |
}
|
293 |
+
|
294 |
+
#modal-config .block.modal-block.padded {
|
295 |
+
padding-top: 25px;
|
296 |
+
height: 100vh;
|
297 |
}
|
298 |
|
299 |
+
#modal-config .modal-container {
|
300 |
+
margin: 0px;
|
301 |
+
padding: 0px;
|
302 |
+
}
|
|
|
303 |
|
304 |
+
#modal-config .close {
|
305 |
+
display: none;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
306 |
}
|
307 |
+
|
308 |
+
/* Config Button Styles */
|
309 |
+
#config-button {
|
310 |
background: none;
|
311 |
border: none;
|
312 |
padding: 8px;
|
|
|
329 |
background-color: rgba(0, 0, 0, 0.1);
|
330 |
}
|
331 |
|
332 |
+
/* Relevancy Score Styles */
|
333 |
+
.relevancy-score {
|
334 |
+
margin-top: 10px !important;
|
335 |
+
font-size: 10px !important;
|
336 |
+
font-style: italic;
|
337 |
+
}
|
338 |
+
|
339 |
+
.score-green {
|
340 |
+
color: green !important;
|
341 |
+
}
|
342 |
+
|
343 |
+
.score-orange {
|
344 |
+
color: orange !important;
|
345 |
+
}
|
346 |
+
|
347 |
+
.score-red {
|
348 |
+
color: red !important;
|
349 |
+
}
|
350 |
+
|
351 |
+
/* Gallery Styles */
|
352 |
+
.gallery-item > div {
|
353 |
+
white-space: normal !important;
|
354 |
+
word-break: break-word !important;
|
355 |
+
overflow-wrap: break-word !important;
|
356 |
+
}
|
357 |
+
|
358 |
+
/* Avatar Styles */
|
359 |
+
.avatar-container.svelte-1x5p6hu:not(.thumbnail-item) img {
|
360 |
+
width: 100%;
|
361 |
+
height: 100%;
|
362 |
+
object-fit: cover;
|
363 |
+
border-radius: 50%;
|
364 |
+
padding: 0px;
|
365 |
+
margin: 0px;
|
366 |
+
}
|
367 |
+
|
368 |
+
/* Message Button Styles */
|
369 |
+
.message-buttons-left.panel.message-buttons.with-avatar {
|
370 |
+
display: none;
|
371 |
+
}
|
372 |
+
|
373 |
+
/* Checkmark Styles */
|
374 |
+
.checkmark {
|
375 |
+
color: green !important;
|
376 |
+
font-size: 18px;
|
377 |
+
margin-right: 10px !important;
|
378 |
+
}
|
379 |
+
|
380 |
+
/* Papers Summary & Relevant Popup Styles */
|
381 |
+
#papers-summary-popup button span,
|
382 |
+
#papers-relevant-popup span {
|
383 |
+
font-size: 16px;
|
384 |
+
font-weight: bold;
|
385 |
+
text-align: center;
|
386 |
+
}
|
387 |
+
|
388 |
+
/* Citations Tab Button Style */
|
389 |
+
#tab-citations .button {
|
390 |
+
padding: 12px 16px;
|
391 |
+
font-size: 16px;
|
392 |
+
font-weight: bold;
|
393 |
+
cursor: pointer;
|
394 |
border: none;
|
395 |
+
outline: none;
|
396 |
+
text-align: left;
|
397 |
+
transition: background-color 0.3s ease;
|
398 |
+
}
|
399 |
+
|
400 |
+
/* Show Figures Button Style */
|
401 |
+
button#show-figures {
|
402 |
+
background-color: #f5f5f5;
|
403 |
+
border: 1px solid #e0e0e0;
|
404 |
+
border-radius: 4px;
|
405 |
+
color: #333333;
|
406 |
cursor: pointer;
|
407 |
+
width: 100%;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
408 |
text-align: center;
|
409 |
}
|
410 |
+
|
411 |
+
/* Gradio Box Style */
|
412 |
+
.gr-box {
|
413 |
+
border-color: #d6c37c;
|
414 |
}
|
415 |
|
416 |
+
/* Hidden Message Style */
|
417 |
+
#hidden-message {
|
418 |
+
display: none;
|
419 |
+
}
|
420 |
|
421 |
+
/* Label Selected Style */
|
422 |
+
label.selected {
|
423 |
+
background: #93c5fd !important;
|
424 |
+
}
|
425 |
|
426 |
+
/* Submit Button Style */
|
427 |
+
#submit-button {
|
428 |
+
padding: 0px !important;
|
429 |
+
}
|
|
|
|
|
430 |
|
431 |
+
/* Hugging Face Space Fixes */
|
432 |
+
.h-full {
|
433 |
+
height: auto !important;
|
434 |
+
min-height: 0 !important;
|
435 |
+
}
|
|
|
|
|
436 |
|
437 |
+
.space-content {
|
438 |
+
height: auto !important;
|
439 |
+
max-height: 100vh !important;
|
440 |
+
overflow: hidden;
|
441 |
+
}
|
442 |
|
443 |
+
/* Dropdown Samples Style */
|
444 |
+
#dropdown-samples {
|
445 |
+
background: none !important;
|
446 |
+
}
|
447 |
|
448 |
+
#dropdown-samples > .container > .wrap {
|
449 |
+
background-color: white;
|
450 |
+
}
|
|
|
|
|
|
|
451 |
|
452 |
+
/* Tab Examples Form Style */
|
453 |
+
#tab-examples > div > .form {
|
454 |
+
border: none;
|
455 |
+
background: none !important;
|
456 |
+
}
|
|
|
|
|
|
|
|
|
457 |
|
458 |
+
/* Utility Classes */
|
459 |
+
.hidden {
|
460 |
+
display: none !important;
|
461 |
+
}
|
|
|
462 |
|
463 |
+
footer {
|
464 |
+
display: none !important;
|
465 |
+
visibility: hidden;
|
466 |
+
}
|
467 |
+
|
468 |
+
a {
|
469 |
+
text-decoration: none;
|
470 |
+
color: inherit;
|
471 |
+
}
|
472 |
+
|
473 |
+
.a-doc-ref {
|
474 |
+
text-decoration: none !important;
|
475 |
+
}
|
476 |
+
|
477 |
+
/* Media Queries */
|
478 |
+
/* Desktop Media Query */
|
479 |
+
@media screen and (min-width: 1024px) {
|
480 |
+
.gradio-container {
|
481 |
+
max-height: calc(100vh - 190px) !important;
|
482 |
+
overflow: hidden;
|
483 |
}
|
484 |
|
485 |
+
div#tab-examples,
|
486 |
+
div#sources-textbox,
|
487 |
+
div#tab-config {
|
488 |
+
height: calc(100vh - 190px) !important;
|
489 |
overflow-y: scroll !important;
|
490 |
}
|
491 |
|
492 |
+
div#sources-figures,
|
493 |
+
div#graphs-container,
|
494 |
+
div#tab-citations {
|
495 |
+
height: calc(100vh - 300px) !important;
|
496 |
+
max-height: 90vh !important;
|
497 |
overflow-y: scroll !important;
|
|
|
498 |
}
|
499 |
|
500 |
+
div#chatbot-row {
|
501 |
+
max-height: calc(100vh - 90px) !important;
|
|
|
|
|
502 |
}
|
503 |
|
504 |
+
div#graphs-container {
|
505 |
+
height: calc(100vh - 210px) !important;
|
506 |
+
overflow-y: scroll !important;
|
507 |
}
|
|
|
508 |
|
509 |
+
div#tab-saved-graphs {
|
|
|
|
|
|
|
510 |
overflow-y: auto;
|
511 |
+
max-height: 80vh;
|
512 |
}
|
|
|
|
|
513 |
}
|
514 |
|
515 |
+
/* Mobile Media Query */
|
|
|
|
|
|
|
|
|
|
|
516 |
@media screen and (max-width: 767px) {
|
517 |
+
div#chatbot {
|
518 |
+
height: 500px !important;
|
|
|
|
|
519 |
}
|
520 |
|
521 |
+
#submit-button {
|
522 |
+
padding: 0 !important;
|
523 |
min-width: 80px;
|
524 |
}
|
525 |
|
|
|
526 |
div.tab-nav button {
|
527 |
display: none !important;
|
528 |
}
|
529 |
|
530 |
+
div.tab-nav button:first-child,
|
|
|
|
|
|
|
|
|
|
|
531 |
div.tab-nav button:nth-child(2) {
|
532 |
display: block !important;
|
533 |
}
|
534 |
+
|
535 |
+
#right-panel button {
|
536 |
display: block !important;
|
537 |
}
|
538 |
|
539 |
+
div#tab-recommended_content {
|
540 |
+
max-height: 50vh;
|
541 |
+
overflow-y: auto;
|
542 |
+
}
|
543 |
+
|
544 |
+
div#tab-saved-graphs {
|
545 |
+
max-height: 50vh;
|
546 |
+
overflow-y: auto;
|
547 |
+
}
|
548 |
}
|
549 |
|
550 |
+
/* Dark Mode */
|
551 |
@media (prefers-color-scheme: dark) {
|
552 |
+
.card {
|
553 |
background-color: #374151;
|
554 |
}
|
555 |
+
|
556 |
+
.card-image > .card-content {
|
557 |
background-color: rgb(55, 65, 81) !important;
|
558 |
}
|
559 |
|
|
|
561 |
background-color: #404652;
|
562 |
}
|
563 |
|
564 |
+
.container > .wrap {
|
565 |
background-color: #374151 !important;
|
566 |
+
color: white !important;
|
|
|
|
|
|
|
567 |
}
|
568 |
+
|
569 |
+
.card-content h2 {
|
570 |
+
color: #e7754f !important;
|
571 |
}
|
572 |
+
|
573 |
.card-footer span {
|
574 |
+
color: white !important;
|
575 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
576 |
|
577 |
+
body.dark .warning-box *,
|
578 |
+
body.dark .tip-box * {
|
579 |
+
color: black !important;
|
580 |
+
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
581 |
|
582 |
+
.doc-ref sup {
|
583 |
+
color: rgb(235 109 35)!important;
|
584 |
+
}
|
585 |
}
|
586 |
|
587 |
+
/* Checkbox Config Style */
|
588 |
+
#checkbox-config {
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
589 |
display: block;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
590 |
position: absolute;
|
591 |
+
background: none;
|
592 |
+
border: none;
|
593 |
+
padding: 8px;
|
594 |
+
cursor: pointer;
|
595 |
+
width: 40px;
|
596 |
+
height: 40px;
|
597 |
+
display: flex;
|
598 |
+
align-items: center;
|
599 |
+
justify-content: center;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
600 |
border-radius: 50%;
|
601 |
+
transition: background-color 0.2s;
|
602 |
+
font-size: 20px;
|
603 |
+
text-align: center;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
604 |
}
|
605 |
|
606 |
+
#checkbox-config:checked {
|
607 |
+
display: block;
|
|
|
|
|
608 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|