Merge branch 'add_openalex_papers' into feature/graph_recommandation
Browse files- app.py +135 -9
- climateqa/engine/chains/answer_rag.py +19 -17
- climateqa/knowledge/openalex.py +3 -4
- front/utils.py +22 -0
app.py
CHANGED
|
@@ -8,6 +8,7 @@ from sentence_transformers import CrossEncoder
|
|
| 8 |
oa = OpenAlex()
|
| 9 |
|
| 10 |
import gradio as gr
|
|
|
|
| 11 |
import pandas as pd
|
| 12 |
import numpy as np
|
| 13 |
import os
|
|
@@ -44,11 +45,11 @@ from climateqa.sample_questions import QUESTIONS
|
|
| 44 |
from climateqa.constants import POSSIBLE_REPORTS, OWID_CATEGORIES
|
| 45 |
from climateqa.utils import get_image_from_azure_blob_storage
|
| 46 |
from climateqa.engine.keywords import make_keywords_chain
|
| 47 |
-
|
| 48 |
-
from climateqa.engine.graph import make_graph_agent
|
| 49 |
from climateqa.engine.embeddings import get_embeddings_function
|
| 50 |
|
| 51 |
-
from front.utils import serialize_docs,process_figures
|
| 52 |
|
| 53 |
from climateqa.event_handler import init_audience, handle_retrieved_documents, stream_answer,handle_retrieved_owid_graphs
|
| 54 |
|
|
@@ -115,9 +116,7 @@ vectorstore_graphs = get_pinecone_vectorstore(embeddings_function, index_name =
|
|
| 115 |
|
| 116 |
llm = get_llm(provider="openai",max_tokens = 1024,temperature = 0.0)
|
| 117 |
reranker = get_reranker("nano")
|
| 118 |
-
# agent = make_graph_agent(llm,vectorstore,reranker)
|
| 119 |
|
| 120 |
-
# agent = make_graph_agent(llm,vectorstore,reranker)
|
| 121 |
agent = make_graph_agent(llm=llm, vectorstore_ipcc=vectorstore, vectorstore_graphs=vectorstore_graphs, reranker=reranker)
|
| 122 |
|
| 123 |
|
|
@@ -248,13 +247,11 @@ def generate_keywords(query):
|
|
| 248 |
|
| 249 |
|
| 250 |
papers_cols_widths = {
|
| 251 |
-
"doc":50,
|
| 252 |
"id":100,
|
| 253 |
"title":300,
|
| 254 |
"doi":100,
|
| 255 |
"publication_year":100,
|
| 256 |
"abstract":500,
|
| 257 |
-
"rerank_score":100,
|
| 258 |
"is_oa":50,
|
| 259 |
}
|
| 260 |
|
|
@@ -262,6 +259,62 @@ papers_cols = list(papers_cols_widths.keys())
|
|
| 262 |
papers_cols_widths = list(papers_cols_widths.values())
|
| 263 |
|
| 264 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 265 |
# --------------------------------------------------------------------
|
| 266 |
# Gradio
|
| 267 |
# --------------------------------------------------------------------
|
|
@@ -363,7 +416,7 @@ with gr.Blocks(title="Climate Q&A", css_paths=os.getcwd()+ "/style.css", theme=t
|
|
| 363 |
samples.append(group_examples)
|
| 364 |
|
| 365 |
|
| 366 |
-
with gr.Tab("Sources",elem_id = "tab-
|
| 367 |
sources_textbox = gr.HTML(show_label=False, elem_id="sources-textbox")
|
| 368 |
docs_textbox = gr.State("")
|
| 369 |
|
|
@@ -379,7 +432,28 @@ with gr.Blocks(title="Climate Q&A", css_paths=os.getcwd()+ "/style.css", theme=t
|
|
| 379 |
show_full_size_figures.click(lambda : Modal(visible=True),None,modal)
|
| 380 |
|
| 381 |
figures_cards = gr.HTML(show_label=False, elem_id="sources-figures")
|
| 382 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 383 |
|
| 384 |
with gr.Tab("Recommended content", elem_id="tab-recommended_content", id=4) as tab_recommended_content:
|
| 385 |
graphs_container = gr.HTML("<h2>There are no graphs to be displayed at the moment. Try asking another question.</h2>")
|
|
@@ -511,6 +585,38 @@ with gr.Blocks(title="Climate Q&A", css_paths=os.getcwd()+ "/style.css", theme=t
|
|
| 511 |
# with gr.Tab("Figures",elem_id = "tab-images",elem_classes = "max-height other-tabs"):
|
| 512 |
# gallery_component = gr.Gallery(object_fit='cover')
|
| 513 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 514 |
# with gr.Tab("Papers (beta)",elem_id = "tab-papers",elem_classes = "max-height other-tabs"):
|
| 515 |
|
| 516 |
# with gr.Row():
|
|
@@ -571,6 +677,21 @@ with gr.Blocks(title="Climate Q&A", css_paths=os.getcwd()+ "/style.css", theme=t
|
|
| 571 |
|
| 572 |
def finish_chat():
|
| 573 |
return gr.update(interactive = True,value = "")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 574 |
|
| 575 |
|
| 576 |
def change_completion_status(current_state):
|
|
@@ -618,6 +739,11 @@ with gr.Blocks(title="Climate Q&A", css_paths=os.getcwd()+ "/style.css", theme=t
|
|
| 618 |
|
| 619 |
dropdown_samples.change(change_sample_questions,dropdown_samples,samples)
|
| 620 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 621 |
|
| 622 |
demo.queue()
|
| 623 |
|
|
|
|
| 8 |
oa = OpenAlex()
|
| 9 |
|
| 10 |
import gradio as gr
|
| 11 |
+
from gradio_modal import Modal
|
| 12 |
import pandas as pd
|
| 13 |
import numpy as np
|
| 14 |
import os
|
|
|
|
| 45 |
from climateqa.constants import POSSIBLE_REPORTS, OWID_CATEGORIES
|
| 46 |
from climateqa.utils import get_image_from_azure_blob_storage
|
| 47 |
from climateqa.engine.keywords import make_keywords_chain
|
| 48 |
+
from climateqa.engine.chains.answer_rag import make_rag_papers_chain
|
| 49 |
+
from climateqa.engine.graph import make_graph_agent
|
| 50 |
from climateqa.engine.embeddings import get_embeddings_function
|
| 51 |
|
| 52 |
+
from front.utils import serialize_docs,process_figures,make_html_df
|
| 53 |
|
| 54 |
from climateqa.event_handler import init_audience, handle_retrieved_documents, stream_answer,handle_retrieved_owid_graphs
|
| 55 |
|
|
|
|
| 116 |
|
| 117 |
llm = get_llm(provider="openai",max_tokens = 1024,temperature = 0.0)
|
| 118 |
reranker = get_reranker("nano")
|
|
|
|
| 119 |
|
|
|
|
| 120 |
agent = make_graph_agent(llm=llm, vectorstore_ipcc=vectorstore, vectorstore_graphs=vectorstore_graphs, reranker=reranker)
|
| 121 |
|
| 122 |
|
|
|
|
| 247 |
|
| 248 |
|
| 249 |
papers_cols_widths = {
|
|
|
|
| 250 |
"id":100,
|
| 251 |
"title":300,
|
| 252 |
"doi":100,
|
| 253 |
"publication_year":100,
|
| 254 |
"abstract":500,
|
|
|
|
| 255 |
"is_oa":50,
|
| 256 |
}
|
| 257 |
|
|
|
|
| 259 |
papers_cols_widths = list(papers_cols_widths.values())
|
| 260 |
|
| 261 |
|
| 262 |
+
async def find_papers(query,after):
|
| 263 |
+
|
| 264 |
+
summary = ""
|
| 265 |
+
keywords = generate_keywords(query)
|
| 266 |
+
df_works = oa.search(keywords,after = after)
|
| 267 |
+
df_works = df_works.dropna(subset=["abstract"])
|
| 268 |
+
df_works = oa.rerank(query,df_works,reranker)
|
| 269 |
+
df_works = df_works.sort_values("rerank_score",ascending=False)
|
| 270 |
+
docs_html = []
|
| 271 |
+
for i in range(10):
|
| 272 |
+
docs_html.append(make_html_df(df_works, i))
|
| 273 |
+
docs_html = "".join(docs_html)
|
| 274 |
+
print(docs_html)
|
| 275 |
+
G = oa.make_network(df_works)
|
| 276 |
+
|
| 277 |
+
height = "750px"
|
| 278 |
+
network = oa.show_network(G,color_by = "rerank_score",notebook=False,height = height)
|
| 279 |
+
network_html = network.generate_html()
|
| 280 |
+
|
| 281 |
+
network_html = network_html.replace("'", "\"")
|
| 282 |
+
css_to_inject = "<style>#mynetwork { border: none !important; } .card { border: none !important; }</style>"
|
| 283 |
+
network_html = network_html + css_to_inject
|
| 284 |
+
|
| 285 |
+
|
| 286 |
+
network_html = f"""<iframe style="width: 100%; height: {height};margin:0 auto" name="result" allow="midi; geolocation; microphone; camera;
|
| 287 |
+
display-capture; encrypted-media;" sandbox="allow-modals allow-forms
|
| 288 |
+
allow-scripts allow-same-origin allow-popups
|
| 289 |
+
allow-top-navigation-by-user-activation allow-downloads" allowfullscreen=""
|
| 290 |
+
allowpaymentrequest="" frameborder="0" srcdoc='{network_html}'></iframe>"""
|
| 291 |
+
|
| 292 |
+
|
| 293 |
+
docs = df_works["content"].head(10).tolist()
|
| 294 |
+
|
| 295 |
+
df_works = df_works.reset_index(drop = True).reset_index().rename(columns = {"index":"doc"})
|
| 296 |
+
df_works["doc"] = df_works["doc"] + 1
|
| 297 |
+
df_works = df_works[papers_cols]
|
| 298 |
+
|
| 299 |
+
yield docs_html, network_html, summary
|
| 300 |
+
|
| 301 |
+
chain = make_rag_papers_chain(llm)
|
| 302 |
+
result = chain.astream_log({"question": query,"docs": docs,"language":"English"})
|
| 303 |
+
path_answer = "/logs/StrOutputParser/streamed_output/-"
|
| 304 |
+
|
| 305 |
+
async for op in result:
|
| 306 |
+
|
| 307 |
+
op = op.ops[0]
|
| 308 |
+
|
| 309 |
+
if op['path'] == path_answer: # reforulated question
|
| 310 |
+
new_token = op['value'] # str
|
| 311 |
+
summary += new_token
|
| 312 |
+
else:
|
| 313 |
+
continue
|
| 314 |
+
yield docs_html, network_html, summary
|
| 315 |
+
|
| 316 |
+
|
| 317 |
+
|
| 318 |
# --------------------------------------------------------------------
|
| 319 |
# Gradio
|
| 320 |
# --------------------------------------------------------------------
|
|
|
|
| 416 |
samples.append(group_examples)
|
| 417 |
|
| 418 |
|
| 419 |
+
with gr.Tab("Sources",elem_id = "tab-sources",id = 1):
|
| 420 |
sources_textbox = gr.HTML(show_label=False, elem_id="sources-textbox")
|
| 421 |
docs_textbox = gr.State("")
|
| 422 |
|
|
|
|
| 432 |
show_full_size_figures.click(lambda : Modal(visible=True),None,modal)
|
| 433 |
|
| 434 |
figures_cards = gr.HTML(show_label=False, elem_id="sources-figures")
|
| 435 |
+
|
| 436 |
+
|
| 437 |
+
|
| 438 |
+
with gr.Tab("Papers",elem_id = "tab-citations",id = 5):
|
| 439 |
+
btn_summary = gr.Button("Summary")
|
| 440 |
+
# Fenêtre simulée pour le Summary
|
| 441 |
+
with gr.Group(visible=False, elem_id="papers-summary-popup") as summary_popup:
|
| 442 |
+
papers_summary = gr.Markdown("### Summary Content", visible=True, elem_id="papers-summary")
|
| 443 |
+
|
| 444 |
+
btn_relevant_papers = gr.Button("Relevant papers")
|
| 445 |
+
# Fenêtre simulée pour les Relevant Papers
|
| 446 |
+
with gr.Group(visible=False, elem_id="papers-relevant-popup") as relevant_popup:
|
| 447 |
+
papers_html = gr.HTML(show_label=False, elem_id="sources-textbox")
|
| 448 |
+
docs_textbox = gr.State("")
|
| 449 |
+
|
| 450 |
+
btn_citations_network = gr.Button("Citations network")
|
| 451 |
+
# Fenêtre simulée pour le Citations Network
|
| 452 |
+
with Modal(visible=False) as modal:
|
| 453 |
+
citations_network = gr.HTML("<h3>Citations Network Graph</h3>", visible=True, elem_id="papers-citations-network")
|
| 454 |
+
btn_citations_network.click(lambda: Modal(visible=True), None, modal)
|
| 455 |
+
|
| 456 |
+
|
| 457 |
|
| 458 |
with gr.Tab("Recommended content", elem_id="tab-recommended_content", id=4) as tab_recommended_content:
|
| 459 |
graphs_container = gr.HTML("<h2>There are no graphs to be displayed at the moment. Try asking another question.</h2>")
|
|
|
|
| 585 |
# with gr.Tab("Figures",elem_id = "tab-images",elem_classes = "max-height other-tabs"):
|
| 586 |
# gallery_component = gr.Gallery(object_fit='cover')
|
| 587 |
|
| 588 |
+
with gr.Tab("Settings",elem_id = "tab-config",id = 2):
|
| 589 |
+
|
| 590 |
+
gr.Markdown("Reminder: You can talk in any language, ClimateQ&A is multi-lingual!")
|
| 591 |
+
|
| 592 |
+
|
| 593 |
+
dropdown_sources = gr.CheckboxGroup(
|
| 594 |
+
["IPCC", "IPBES","IPOS", "OpenAlex"],
|
| 595 |
+
label="Select source",
|
| 596 |
+
value=["IPCC"],
|
| 597 |
+
interactive=True,
|
| 598 |
+
)
|
| 599 |
+
|
| 600 |
+
dropdown_reports = gr.Dropdown(
|
| 601 |
+
POSSIBLE_REPORTS,
|
| 602 |
+
label="Or select specific reports",
|
| 603 |
+
multiselect=True,
|
| 604 |
+
value=None,
|
| 605 |
+
interactive=True,
|
| 606 |
+
)
|
| 607 |
+
|
| 608 |
+
dropdown_audience = gr.Dropdown(
|
| 609 |
+
["Children","General public","Experts"],
|
| 610 |
+
label="Select audience",
|
| 611 |
+
value="Experts",
|
| 612 |
+
interactive=True,
|
| 613 |
+
)
|
| 614 |
+
|
| 615 |
+
after = gr.Slider(minimum=1950,maximum=2023,step=1,value=1960,label="Publication date",show_label=True,interactive=True,elem_id="date-papers")
|
| 616 |
+
|
| 617 |
+
output_query = gr.Textbox(label="Query used for retrieval",show_label = True,elem_id = "reformulated-query",lines = 2,interactive = False)
|
| 618 |
+
output_language = gr.Textbox(label="Language",show_label = True,elem_id = "language",lines = 1,interactive = False)
|
| 619 |
+
|
| 620 |
# with gr.Tab("Papers (beta)",elem_id = "tab-papers",elem_classes = "max-height other-tabs"):
|
| 621 |
|
| 622 |
# with gr.Row():
|
|
|
|
| 677 |
|
| 678 |
def finish_chat():
|
| 679 |
return gr.update(interactive = True,value = "")
|
| 680 |
+
|
| 681 |
+
# Initialize visibility states
|
| 682 |
+
summary_visible = False
|
| 683 |
+
relevant_visible = False
|
| 684 |
+
|
| 685 |
+
# Functions to toggle visibility
|
| 686 |
+
def toggle_summary_visibility():
|
| 687 |
+
global summary_visible
|
| 688 |
+
summary_visible = not summary_visible
|
| 689 |
+
return gr.update(visible=summary_visible)
|
| 690 |
+
|
| 691 |
+
def toggle_relevant_visibility():
|
| 692 |
+
global relevant_visible
|
| 693 |
+
relevant_visible = not relevant_visible
|
| 694 |
+
return gr.update(visible=relevant_visible)
|
| 695 |
|
| 696 |
|
| 697 |
def change_completion_status(current_state):
|
|
|
|
| 739 |
|
| 740 |
dropdown_samples.change(change_sample_questions,dropdown_samples,samples)
|
| 741 |
|
| 742 |
+
textbox.submit(find_papers,[textbox,after], [papers_html,citations_network,papers_summary])
|
| 743 |
+
examples_hidden.change(find_papers,[examples_hidden,after], [papers_html,citations_network,papers_summary])
|
| 744 |
+
|
| 745 |
+
btn_summary.click(toggle_summary_visibility, outputs=summary_popup)
|
| 746 |
+
btn_relevant_papers.click(toggle_relevant_visibility, outputs=relevant_popup)
|
| 747 |
|
| 748 |
demo.queue()
|
| 749 |
|
climateqa/engine/chains/answer_rag.py
CHANGED
|
@@ -7,6 +7,8 @@ from langchain_core.prompts.base import format_document
|
|
| 7 |
|
| 8 |
from climateqa.engine.chains.prompts import answer_prompt_template,answer_prompt_without_docs_template,answer_prompt_images_template
|
| 9 |
from climateqa.engine.chains.prompts import papers_prompt_template
|
|
|
|
|
|
|
| 10 |
|
| 11 |
DEFAULT_DOCUMENT_PROMPT = PromptTemplate.from_template(template="{page_content}")
|
| 12 |
|
|
@@ -71,32 +73,32 @@ def make_rag_node(llm,with_docs = True):
|
|
| 71 |
|
| 72 |
|
| 73 |
|
| 74 |
-
|
| 75 |
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
|
| 82 |
-
|
| 83 |
-
|
| 84 |
|
| 85 |
-
|
| 86 |
|
| 87 |
|
| 88 |
|
| 89 |
|
| 90 |
|
| 91 |
|
| 92 |
-
|
| 93 |
|
| 94 |
-
|
| 95 |
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
|
| 101 |
-
|
| 102 |
-
|
|
|
|
| 7 |
|
| 8 |
from climateqa.engine.chains.prompts import answer_prompt_template,answer_prompt_without_docs_template,answer_prompt_images_template
|
| 9 |
from climateqa.engine.chains.prompts import papers_prompt_template
|
| 10 |
+
from ..utils import rename_chain, pass_values
|
| 11 |
+
|
| 12 |
|
| 13 |
DEFAULT_DOCUMENT_PROMPT = PromptTemplate.from_template(template="{page_content}")
|
| 14 |
|
|
|
|
| 73 |
|
| 74 |
|
| 75 |
|
| 76 |
+
def make_rag_papers_chain(llm):
|
| 77 |
|
| 78 |
+
prompt = ChatPromptTemplate.from_template(papers_prompt_template)
|
| 79 |
+
input_documents = {
|
| 80 |
+
"context":lambda x : _combine_documents(x["docs"]),
|
| 81 |
+
**pass_values(["question","language"])
|
| 82 |
+
}
|
| 83 |
|
| 84 |
+
chain = input_documents | prompt | llm | StrOutputParser()
|
| 85 |
+
chain = rename_chain(chain,"answer")
|
| 86 |
|
| 87 |
+
return chain
|
| 88 |
|
| 89 |
|
| 90 |
|
| 91 |
|
| 92 |
|
| 93 |
|
| 94 |
+
def make_illustration_chain(llm):
|
| 95 |
|
| 96 |
+
prompt_with_images = ChatPromptTemplate.from_template(answer_prompt_images_template)
|
| 97 |
|
| 98 |
+
input_description_images = {
|
| 99 |
+
"images":lambda x : _combine_documents(get_image_docs(x["docs"])),
|
| 100 |
+
**pass_values(["question","audience","language","answer"]),
|
| 101 |
+
}
|
| 102 |
|
| 103 |
+
illustration_chain = input_description_images | prompt_with_images | llm | StrOutputParser()
|
| 104 |
+
return illustration_chain
|
climateqa/knowledge/openalex.py
CHANGED
|
@@ -62,11 +62,10 @@ class OpenAlex():
|
|
| 62 |
|
| 63 |
scores = reranker.rank(
|
| 64 |
query,
|
| 65 |
-
df["content"].tolist()
|
| 66 |
-
top_k = len(df),
|
| 67 |
)
|
| 68 |
-
scores.
|
| 69 |
-
scores = [x
|
| 70 |
df["rerank_score"] = scores
|
| 71 |
return df
|
| 72 |
|
|
|
|
| 62 |
|
| 63 |
scores = reranker.rank(
|
| 64 |
query,
|
| 65 |
+
df["content"].tolist()
|
|
|
|
| 66 |
)
|
| 67 |
+
scores = sorted(scores.results, key = lambda x : x.document.doc_id)
|
| 68 |
+
scores = [x.score for x in scores]
|
| 69 |
df["rerank_score"] = scores
|
| 70 |
return df
|
| 71 |
|
front/utils.py
CHANGED
|
@@ -228,6 +228,28 @@ def make_html_source(source,i):
|
|
| 228 |
return card
|
| 229 |
|
| 230 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 231 |
def make_html_figure_sources(source,i,img_str):
|
| 232 |
meta = source.metadata
|
| 233 |
content = source.page_content.strip()
|
|
|
|
| 228 |
return card
|
| 229 |
|
| 230 |
|
| 231 |
+
def make_html_df(df,i):
|
| 232 |
+
title = df['title'][i]
|
| 233 |
+
content = df['abstract'][i]
|
| 234 |
+
url = df['doi'][i]
|
| 235 |
+
publication_date = df['publication_year'][i]
|
| 236 |
+
|
| 237 |
+
card = f"""
|
| 238 |
+
<div class="card" id="doc{i}">
|
| 239 |
+
<div class="card-content">
|
| 240 |
+
<h2>Doc {i+1} - {title}</h2>
|
| 241 |
+
<p>{content}</p>
|
| 242 |
+
</div>
|
| 243 |
+
<div class="card-footer">
|
| 244 |
+
<span>{publication_date}</span>
|
| 245 |
+
<a href="{url}" target="_blank" class="pdf-link">
|
| 246 |
+
</div>
|
| 247 |
+
</div>
|
| 248 |
+
"""
|
| 249 |
+
|
| 250 |
+
return card
|
| 251 |
+
|
| 252 |
+
|
| 253 |
def make_html_figure_sources(source,i,img_str):
|
| 254 |
meta = source.metadata
|
| 255 |
content = source.page_content.strip()
|