File size: 6,975 Bytes
88b346d
 
 
75bd17d
88b346d
 
3d6fd1b
8685e43
 
 
166d210
 
 
 
 
 
17a978f
88b346d
473dcdc
17a978f
88b346d
 
affc874
8685e43
88b346d
8685e43
75bd17d
8685e43
 
88b346d
8685e43
 
 
2d4b96b
affc874
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8685e43
88b346d
 
 
 
 
 
 
 
 
fd6149f
88b346d
473dcdc
88b346d
 
 
 
 
 
 
 
 
 
 
 
 
 
473dcdc
88b346d
 
8685e43
 
 
88b346d
 
 
 
 
 
65067f0
 
 
 
8685e43
affc874
 
 
 
fd8b8bd
8685e43
166d210
 
7249e3f
65067f0
7249e3f
51d6e66
166d210
 
 
7249e3f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
166d210
 
65067f0
 
 
166d210
 
7249e3f
 
 
 
 
 
 
 
 
 
 
a17343b
88b346d
7249e3f
166d210
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ef86508
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
import gradio as gr
from transformers import pipeline
from haystack.document_stores import FAISSDocumentStore
from haystack.nodes import EmbeddingRetriever, SentenceTransformersRanker
import numpy as np
import openai
import os
from datasets import load_dataset
from datasets import Dataset
import time
from utils import (
    is_climate_change_related,
    make_pairs,
    set_openai_api_key,
    get_random_string,
)


classifier = pipeline("zero-shot-classification", model="facebook/bart-large-mnli")
system_template = {"role": os.environ["role"], "content": os.environ["content"]}


def gen_conv(query: str, report_type, history=[system_template], ipcc=True):
    """return (answer:str, history:list[dict], sources:str)

    Args:
        query (str): the user message
        history (list, optional): _description_. Defaults to [system_template].
        ipcc (bool, optional): _description_. Defaults to True.

    Returns:
        _type_: _description_
    """
    if report_type == "IPCC only":
        document_store = FAISSDocumentStore.load(
            index_path="./documents/climate_gpt_only_giec.faiss",
            config_path="./documents/climate_gpt_only_giec.json",
        )
    else:
        document_store = FAISSDocumentStore.load(
            index_path="./documents/climate_gpt.faiss",
            config_path="./documents/climate_gpt.json",
        )

    dense = EmbeddingRetriever(
        document_store=document_store,
        embedding_model="sentence-transformers/multi-qa-mpnet-base-dot-v1",
        model_format="sentence_transformers",
    )

    retrieve = ipcc and is_climate_change_related(query, classifier)

    sources = ""
    messages = history + [
        {"role": "user", "content": query},
    ]

    if retrieve:
        docs = dense.retrieve(query=query, top_k=5)
        sources = "\n\n".join(
            [os.environ["sources"]]
            + [
                f"{d.meta['file_name']} Page {d.meta['page_number']}\n{d.content}"
                for d in docs
            ]
        )
        messages.append({"role": "system", "content": sources})

    answer = openai.ChatCompletion.create(
        model="gpt-3.5-turbo",
        messages=messages,
        temperature=0.2,
    )["choices"][0]["message"]["content"]

    if retrieve:
        messages.pop()
        sources = "\n\n".join(
            f"{d.meta['file_name']} Page {d.meta['page_number']}:\n{d.content}"
            for d in docs
        )
    else:
        sources = "No environmental report was used to provide this answer."

    messages.append({"role": "assistant", "content": answer})
    gradio_format = make_pairs([a["content"] for a in messages[1:]])

    return gradio_format, messages, sources


def test(feed: str):
    print(feed)


# Gradio
css_code = ".gradio-container {background-image: url('file=background.png');background-position: top right}"

with gr.Blocks(title="🌍 ClimateGPT Ekimetrics", css=css_code) as demo:

    openai.api_key = os.environ["api_key"]

    user_id = gr.State([get_random_string(10)])

    with gr.Tab("App"):
        gr.Markdown("# Welcome to Climate GPT 🌍 !")
        gr.Markdown(
            """ Climate GPT is an interactive exploration tool designed to help you easily find relevant information based on  of Environmental reports such as IPCCs and other environmental reports.
            \n **How does it work:** This Chatbot is a combination of two technologies. FAISS search applied to a vast amount of scientific climate reports and TurboGPT to generate human-like text from the part of the document extracted from the database. 
            \n ⚠️ Warning: Always refer to the source to ensure the validity of the information communicated.
            """
        )
        with gr.Row():
            with gr.Column(scale=2):
                chatbot = gr.Chatbot()
                state = gr.State([system_template])

                with gr.Row():
                    ask = gr.Textbox(
                        show_label=False,
                        placeholder="Enter text and press enter",
                        sample_inputs=["which country polutes the most ?"],
                    ).style(container=False)
                    print(f"Type from ask textbox {ask.type}")

            with gr.Column(scale=1, variant="panel"):
                gr.Markdown("### Sources")
                sources_textbox = gr.Textbox(
                    interactive=False, show_label=False, max_lines=50
                )

        ask.submit(
            fn=gen_conv,
            inputs=[
                ask,
                gr.inputs.Dropdown(
                    ["IPCC only", "All available"],
                    default="All available",
                    label="Select reports",
                ),
                state,
            ],
            outputs=[chatbot, state, sources_textbox],
        )
        with gr.Accordion("Feedbacks", open=False):
            gr.Markdown("Please complete some feedbacks πŸ™")
            feedback = gr.Textbox()
            feedback_save = gr.Button(value="submit feedback")
            feedback_save.click(test, inputs=[feedback])

        with gr.Accordion("Add your personal openai api key - Option", open=False):
            openai_api_key_textbox = gr.Textbox(
                placeholder="Paste your OpenAI API key (sk-...) and hit Enter",
                show_label=False,
                lines=1,
                type="password",
            )
        openai_api_key_textbox.change(
            set_openai_api_key, inputs=[openai_api_key_textbox]
        )
        openai_api_key_textbox.submit(
            set_openai_api_key, inputs=[openai_api_key_textbox]
        )

    with gr.Tab("Information"):
        gr.Markdown(
            """
        ## πŸ“– Reports used : \n
        - First Assessment Report on the Physical Science of Climate Change
        - Second assessment Report on Climate Change Adaptation
        - Third Assessment Report on Climate Change Mitigation
        - Food Outlook Biannual Report on Global Food Markets
        - IEA's report on the Role of Critical Minerals in Clean Energy Transitions
        - Limits to Growth
        - Outside The Safe operating system of the Planetary Boundary for Novel Entities
        - Planetary Boundaries Guiding
        - State of the Oceans report
        - Word Energy Outlook 2021
        - Word Energy Outlook 2022
        - The environmental impacts of plastics and micro plastics use, waste and polution ET=U and national measures
        - IPBES Global report - MArch 2022

        \n
        IPCC is a United Nations body that assesses the science related to climate change, including its impacts and possible response options. 
        The IPCC is considered the leading scientific authority on all things related to global climate change.

        """
        )
    with gr.Tab("Examples"):
        gr.Markdown("See here some examples on how to use the Chatbot")

demo.launch()