Spaces:
Running
Running
Upload 2 files (#8)
Browse files- Upload 2 files (54524654beb9557ad3f8d374190e45df281f1371)
- app.py +398 -69
- requirements.txt +30 -12
app.py
CHANGED
|
@@ -14,6 +14,12 @@ from urllib.parse import urlparse, unquote
|
|
| 14 |
from pathlib import Path
|
| 15 |
import tempfile
|
| 16 |
from tqdm import tqdm
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 17 |
|
| 18 |
# ---------------------- UTILITY FUNCTIONS ----------------------
|
| 19 |
|
|
@@ -94,6 +100,7 @@ def is_diffusers_model(model_path):
|
|
| 94 |
return required_folders.issubset(set(os.listdir(model_path))) and os.path.isfile(os.path.join(model_path, "model_index.json"))
|
| 95 |
|
| 96 |
# ---------------------- MODEL UTIL (From library.sdxl_model_util) ----------------------
|
|
|
|
| 97 |
def load_models_from_sdxl_checkpoint(sdxl_base_id, checkpoint_path, device):
|
| 98 |
"""Loads SDXL model components from a checkpoint file."""
|
| 99 |
text_encoder1 = CLIPTextModel.from_pretrained(sdxl_base_id, subfolder="text_encoder").to(device)
|
|
@@ -314,38 +321,300 @@ def save_sdxl_as_diffusers(args, text_encoder1, text_encoder2, vae, unet, save_d
|
|
| 314 |
with output_widget:
|
| 315 |
print(f"Model saved as {save_dtype}.")
|
| 316 |
|
| 317 |
-
def
|
| 318 |
-
"""
|
| 319 |
-
|
| 320 |
-
|
| 321 |
-
|
| 322 |
-
|
| 323 |
-
|
| 324 |
-
|
| 325 |
-
|
| 326 |
-
|
| 327 |
-
|
| 328 |
-
|
| 329 |
-
with tempfile.TemporaryDirectory() as tmpdirname:
|
| 330 |
-
args = Args(model_to_load, save_precision_as, epoch, global_step, reference_model, tmpdirname, fp16)
|
| 331 |
-
args.model_to_save = increment_filename(os.path.splitext(args.model_to_load)[0] + ".safetensors")
|
| 332 |
|
| 333 |
-
|
| 334 |
-
|
| 335 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 336 |
|
| 337 |
-
|
| 338 |
-
|
|
|
|
| 339 |
|
| 340 |
-
|
| 341 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 342 |
|
| 343 |
-
|
| 344 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 345 |
|
| 346 |
-
|
| 347 |
-
|
| 348 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 349 |
|
| 350 |
def upload_to_huggingface(model_path, hf_token, orgs_name, model_name, make_private, output_widget):
|
| 351 |
"""Uploads a model to the Hugging Face Hub."""
|
|
@@ -428,53 +697,113 @@ def increment_filename(filename):
|
|
| 428 |
return new_name
|
| 429 |
counter += 1
|
| 430 |
|
| 431 |
-
with gr.Blocks() as demo:
|
| 432 |
-
|
| 433 |
-
#
|
| 434 |
-
|
| 435 |
-
|
| 436 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 437 |
""")
|
| 438 |
-
gr.HTML(
|
| 439 |
-
"""
|
| 440 |
-
<a href='https://ko-fi.com/Z8Z8L4EO' target='_blank'>
|
| 441 |
-
<img height='36' style='border:0px;height:36px;' src='https://storage.ko-fi.com/cdn/kofi3.png?v=6' border='0' alt='Buy Me a Coffee at ko-fi.com' />
|
| 442 |
-
</a>
|
| 443 |
-
"""
|
| 444 |
-
)
|
| 445 |
-
gr.Markdown(f"""**Understanding the 'Model to Load' Input:**
|
| 446 |
-
|
| 447 |
-
This field can accept any of the following:
|
| 448 |
-
* A Hugging Face model identifier (e.g., `stabilityai/stable-diffusion-xl-base-1.0`).
|
| 449 |
-
* A direct URL to a .ckpt or .safetensors model file.
|
| 450 |
-
* **Important:** Huggingface direct links need to end as /resolve/main/ and the name of the model after.""")
|
| 451 |
-
model_to_load = gr.Textbox(label="Model to Load (Checkpoint or Diffusers)", placeholder="Path to model")
|
| 452 |
-
with gr.Row():
|
| 453 |
-
save_precision_as = gr.Dropdown(
|
| 454 |
-
choices=["fp16", "bf16", "float"], value="fp16", label="Save Precision As"
|
| 455 |
-
)
|
| 456 |
-
fp16 = gr.Checkbox(label="Load as fp16 (Diffusers only)")
|
| 457 |
with gr.Row():
|
| 458 |
-
|
| 459 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 460 |
|
| 461 |
-
|
| 462 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 463 |
|
| 464 |
-
|
| 465 |
-
|
| 466 |
-
|
| 467 |
-
|
| 468 |
-
|
| 469 |
-
|
| 470 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 471 |
|
| 472 |
-
|
| 473 |
-
|
|
|
|
|
|
|
|
|
|
| 474 |
|
| 475 |
-
|
| 476 |
-
|
| 477 |
-
|
| 478 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 479 |
|
| 480 |
demo.launch()
|
|
|
|
| 14 |
from pathlib import Path
|
| 15 |
import tempfile
|
| 16 |
from tqdm import tqdm
|
| 17 |
+
import psutil
|
| 18 |
+
import math
|
| 19 |
+
import shutil
|
| 20 |
+
import hashlib
|
| 21 |
+
from datetime import datetime
|
| 22 |
+
from typing import Dict, List, Optional
|
| 23 |
|
| 24 |
# ---------------------- UTILITY FUNCTIONS ----------------------
|
| 25 |
|
|
|
|
| 100 |
return required_folders.issubset(set(os.listdir(model_path))) and os.path.isfile(os.path.join(model_path, "model_index.json"))
|
| 101 |
|
| 102 |
# ---------------------- MODEL UTIL (From library.sdxl_model_util) ----------------------
|
| 103 |
+
|
| 104 |
def load_models_from_sdxl_checkpoint(sdxl_base_id, checkpoint_path, device):
|
| 105 |
"""Loads SDXL model components from a checkpoint file."""
|
| 106 |
text_encoder1 = CLIPTextModel.from_pretrained(sdxl_base_id, subfolder="text_encoder").to(device)
|
|
|
|
| 321 |
with output_widget:
|
| 322 |
print(f"Model saved as {save_dtype}.")
|
| 323 |
|
| 324 |
+
def get_save_dtype(precision):
|
| 325 |
+
"""
|
| 326 |
+
Convert precision string to torch dtype
|
| 327 |
+
"""
|
| 328 |
+
if precision == "float32" or precision == "fp32":
|
| 329 |
+
return torch.float32
|
| 330 |
+
elif precision == "float16" or precision == "fp16":
|
| 331 |
+
return torch.float16
|
| 332 |
+
elif precision == "bfloat16" or precision == "bf16":
|
| 333 |
+
return torch.bfloat16
|
| 334 |
+
else:
|
| 335 |
+
raise ValueError(f"Unsupported precision: {precision}")
|
|
|
|
|
|
|
|
|
|
| 336 |
|
| 337 |
+
def get_file_size(file_path):
|
| 338 |
+
"""Get file size in GB."""
|
| 339 |
+
try:
|
| 340 |
+
size_bytes = Path(file_path).stat().st_size
|
| 341 |
+
return size_bytes / (1024 * 1024 * 1024) # Convert to GB
|
| 342 |
+
except:
|
| 343 |
+
return None
|
| 344 |
|
| 345 |
+
def get_available_memory():
|
| 346 |
+
"""Get available system memory in GB."""
|
| 347 |
+
return psutil.virtual_memory().available / (1024 * 1024 * 1024)
|
| 348 |
|
| 349 |
+
def estimate_memory_requirements(model_path, precision):
|
| 350 |
+
"""Estimate memory requirements for model conversion."""
|
| 351 |
+
try:
|
| 352 |
+
# Base memory requirement for SDXL
|
| 353 |
+
base_memory = 8 # GB
|
| 354 |
+
|
| 355 |
+
# Get model size if local file
|
| 356 |
+
model_size = get_file_size(model_path) if not is_valid_url(model_path) else None
|
| 357 |
+
|
| 358 |
+
# Adjust for precision
|
| 359 |
+
memory_multiplier = 1.0 if precision in ["float16", "fp16", "bfloat16", "bf16"] else 2.0
|
| 360 |
+
|
| 361 |
+
# Calculate total required memory
|
| 362 |
+
required_memory = (base_memory + (model_size if model_size else 12)) * memory_multiplier
|
| 363 |
+
|
| 364 |
+
return required_memory
|
| 365 |
+
except:
|
| 366 |
+
return 16 # Default safe estimate
|
| 367 |
|
| 368 |
+
def validate_model(model_path, precision):
|
| 369 |
+
"""
|
| 370 |
+
Validate the model before conversion.
|
| 371 |
+
Returns (is_valid, message)
|
| 372 |
+
"""
|
| 373 |
+
try:
|
| 374 |
+
# Check if it's a URL
|
| 375 |
+
if is_valid_url(model_path):
|
| 376 |
+
try:
|
| 377 |
+
response = requests.head(model_path)
|
| 378 |
+
if response.status_code != 200:
|
| 379 |
+
return False, "❌ Invalid URL or model not accessible"
|
| 380 |
+
if 'content-length' in response.headers:
|
| 381 |
+
size_gb = int(response.headers['content-length']) / (1024 * 1024 * 1024)
|
| 382 |
+
if size_gb < 0.1:
|
| 383 |
+
return False, "❌ File too small to be a valid model"
|
| 384 |
+
except:
|
| 385 |
+
return False, "❌ Error checking URL"
|
| 386 |
+
|
| 387 |
+
# Check if it's a local file
|
| 388 |
+
elif not model_path.startswith("stabilityai/") and not Path(model_path).exists():
|
| 389 |
+
return False, "❌ Model file not found"
|
| 390 |
+
|
| 391 |
+
# Check available memory
|
| 392 |
+
available_memory = get_available_memory()
|
| 393 |
+
required_memory = estimate_memory_requirements(model_path, precision)
|
| 394 |
+
|
| 395 |
+
if available_memory < required_memory:
|
| 396 |
+
return False, f"❌ Insufficient memory. Need {math.ceil(required_memory)}GB, but only {math.ceil(available_memory)}GB available"
|
| 397 |
+
|
| 398 |
+
# Memory warning
|
| 399 |
+
memory_message = ""
|
| 400 |
+
if available_memory < required_memory * 1.5:
|
| 401 |
+
memory_message = "⚠️ Memory is tight. Consider closing other applications."
|
| 402 |
+
|
| 403 |
+
return True, f"✅ Model validated successfully. {memory_message}"
|
| 404 |
+
|
| 405 |
+
except Exception as e:
|
| 406 |
+
return False, f"❌ Validation error: {str(e)}"
|
| 407 |
|
| 408 |
+
def cleanup_temp_files(directory=None):
|
| 409 |
+
"""Clean up temporary files after conversion."""
|
| 410 |
+
try:
|
| 411 |
+
if directory:
|
| 412 |
+
shutil.rmtree(directory, ignore_errors=True)
|
| 413 |
+
# Clean up other temp files
|
| 414 |
+
temp_pattern = "*.tmp"
|
| 415 |
+
for temp_file in Path(".").glob(temp_pattern):
|
| 416 |
+
temp_file.unlink()
|
| 417 |
+
except Exception as e:
|
| 418 |
+
print(f"Warning: Error during cleanup: {e}")
|
| 419 |
+
|
| 420 |
+
def convert_model(model_to_load, save_precision_as, epoch, global_step, reference_model, fp16, output_widget):
|
| 421 |
+
"""Convert the model between different formats."""
|
| 422 |
+
temp_dir = None
|
| 423 |
+
history = ConversionHistory()
|
| 424 |
+
|
| 425 |
+
try:
|
| 426 |
+
print("Starting model conversion...")
|
| 427 |
+
update_progress(output_widget, "⏳ Initializing conversion process...", 0)
|
| 428 |
+
|
| 429 |
+
# Get optimization suggestions
|
| 430 |
+
available_memory = get_available_memory()
|
| 431 |
+
auto_suggestions = get_auto_optimization_suggestions(model_to_load, save_precision_as, available_memory)
|
| 432 |
+
history_suggestions = history.get_optimization_suggestions(model_to_load)
|
| 433 |
+
|
| 434 |
+
# Display suggestions
|
| 435 |
+
if auto_suggestions or history_suggestions:
|
| 436 |
+
print("\n🔍 Optimization Suggestions:")
|
| 437 |
+
for suggestion in auto_suggestions + history_suggestions:
|
| 438 |
+
print(suggestion)
|
| 439 |
+
print("\n")
|
| 440 |
+
|
| 441 |
+
# Validate model
|
| 442 |
+
is_valid, message = validate_model(model_to_load, save_precision_as)
|
| 443 |
+
if not is_valid:
|
| 444 |
+
raise ValueError(message)
|
| 445 |
+
print(message)
|
| 446 |
+
|
| 447 |
+
args = SimpleNamespace()
|
| 448 |
+
args.model_to_load = model_to_load
|
| 449 |
+
args.save_precision_as = save_precision_as
|
| 450 |
+
args.epoch = epoch
|
| 451 |
+
args.global_step = global_step
|
| 452 |
+
args.reference_model = reference_model
|
| 453 |
+
args.fp16 = fp16
|
| 454 |
+
|
| 455 |
+
update_progress(output_widget, "🔍 Validating input model...", 10)
|
| 456 |
+
args.model_to_save = increment_filename(os.path.splitext(args.model_to_load)[0] + ".safetensors")
|
| 457 |
+
|
| 458 |
+
save_dtype = get_save_dtype(save_precision_as)
|
| 459 |
+
|
| 460 |
+
# Create temporary directory for processing
|
| 461 |
+
temp_dir = tempfile.mkdtemp(prefix="sdxl_conversion_")
|
| 462 |
+
|
| 463 |
+
update_progress(output_widget, "📥 Loading model components...", 30)
|
| 464 |
+
is_load_checkpoint = determine_load_checkpoint(args.model_to_load)
|
| 465 |
+
if is_load_checkpoint is None:
|
| 466 |
+
raise ValueError("Invalid model format or path")
|
| 467 |
+
|
| 468 |
+
update_progress(output_widget, "🔄 Converting model...", 50)
|
| 469 |
+
loaded_model_data = load_sdxl_model(args, is_load_checkpoint, save_dtype, output_widget)
|
| 470 |
+
|
| 471 |
+
update_progress(output_widget, "💾 Saving converted model...", 80)
|
| 472 |
+
is_save_checkpoint = args.model_to_save.endswith(get_supported_extensions())
|
| 473 |
+
result = convert_and_save_sdxl_model(args, is_save_checkpoint, loaded_model_data, save_dtype, output_widget)
|
| 474 |
+
|
| 475 |
+
update_progress(output_widget, "✅ Conversion completed!", 100)
|
| 476 |
+
print(f"Model conversion completed. Saved to: {args.model_to_save}")
|
| 477 |
+
|
| 478 |
+
# Verify the converted model
|
| 479 |
+
is_valid, verify_message = verify_model_structure(args.model_to_save)
|
| 480 |
+
if not is_valid:
|
| 481 |
+
raise ValueError(verify_message)
|
| 482 |
+
print(verify_message)
|
| 483 |
+
|
| 484 |
+
# Record successful conversion
|
| 485 |
+
history.add_entry(
|
| 486 |
+
model_to_load,
|
| 487 |
+
{
|
| 488 |
+
'precision': save_precision_as,
|
| 489 |
+
'fp16': fp16,
|
| 490 |
+
'epoch': epoch,
|
| 491 |
+
'global_step': global_step
|
| 492 |
+
},
|
| 493 |
+
True,
|
| 494 |
+
"Conversion completed successfully"
|
| 495 |
+
)
|
| 496 |
+
|
| 497 |
+
cleanup_temp_files(temp_dir)
|
| 498 |
+
return result
|
| 499 |
+
|
| 500 |
+
except Exception as e:
|
| 501 |
+
if temp_dir:
|
| 502 |
+
cleanup_temp_files(temp_dir)
|
| 503 |
+
|
| 504 |
+
# Record failed conversion
|
| 505 |
+
history.add_entry(
|
| 506 |
+
model_to_load,
|
| 507 |
+
{
|
| 508 |
+
'precision': save_precision_as,
|
| 509 |
+
'fp16': fp16,
|
| 510 |
+
'epoch': epoch,
|
| 511 |
+
'global_step': global_step
|
| 512 |
+
},
|
| 513 |
+
False,
|
| 514 |
+
str(e)
|
| 515 |
+
)
|
| 516 |
+
|
| 517 |
+
error_msg = f"❌ Error during model conversion: {str(e)}"
|
| 518 |
+
print(error_msg)
|
| 519 |
+
return error_msg
|
| 520 |
+
|
| 521 |
+
def update_progress(output_widget, message, progress):
|
| 522 |
+
"""Update the progress bar and message in the UI."""
|
| 523 |
+
progress_bar = "▓" * (progress // 5) + "░" * ((100 - progress) // 5)
|
| 524 |
+
print(f"{message}\n[{progress_bar}] {progress}%")
|
| 525 |
+
|
| 526 |
+
class ConversionHistory:
|
| 527 |
+
def __init__(self, history_file="conversion_history.json"):
|
| 528 |
+
self.history_file = history_file
|
| 529 |
+
self.history = self._load_history()
|
| 530 |
+
|
| 531 |
+
def _load_history(self) -> List[Dict]:
|
| 532 |
+
try:
|
| 533 |
+
with open(self.history_file, 'r') as f:
|
| 534 |
+
return json.load(f)
|
| 535 |
+
except (FileNotFoundError, json.JSONDecodeError):
|
| 536 |
+
return []
|
| 537 |
+
|
| 538 |
+
def _save_history(self):
|
| 539 |
+
with open(self.history_file, 'w') as f:
|
| 540 |
+
json.dump(self.history, f, indent=2)
|
| 541 |
+
|
| 542 |
+
def add_entry(self, model_path: str, settings: Dict, success: bool, message: str):
|
| 543 |
+
entry = {
|
| 544 |
+
'timestamp': datetime.now().isoformat(),
|
| 545 |
+
'model_path': model_path,
|
| 546 |
+
'settings': settings,
|
| 547 |
+
'success': success,
|
| 548 |
+
'message': message
|
| 549 |
+
}
|
| 550 |
+
self.history.append(entry)
|
| 551 |
+
self._save_history()
|
| 552 |
+
|
| 553 |
+
def get_optimization_suggestions(self, model_path: str) -> List[str]:
|
| 554 |
+
"""Analyze history and provide optimization suggestions."""
|
| 555 |
+
suggestions = []
|
| 556 |
+
similar_conversions = [h for h in self.history if h['model_path'] == model_path]
|
| 557 |
+
|
| 558 |
+
if similar_conversions:
|
| 559 |
+
success_rate = sum(1 for h in similar_conversions if h['success']) / len(similar_conversions)
|
| 560 |
+
if success_rate < 1.0:
|
| 561 |
+
failed_attempts = [h for h in similar_conversions if not h['success']]
|
| 562 |
+
if any('memory' in h['message'].lower() for h in failed_attempts):
|
| 563 |
+
suggestions.append("⚠️ Previous attempts had memory issues. Consider using fp16 precision.")
|
| 564 |
+
if any('timeout' in h['message'].lower() for h in failed_attempts):
|
| 565 |
+
suggestions.append("⚠️ Previous attempts timed out. Try breaking down the conversion process.")
|
| 566 |
+
|
| 567 |
+
return suggestions
|
| 568 |
+
|
| 569 |
+
def verify_model_structure(model_path: str) -> tuple[bool, str]:
|
| 570 |
+
"""Verify the structure of the converted model."""
|
| 571 |
+
try:
|
| 572 |
+
if model_path.endswith('.safetensors'):
|
| 573 |
+
# Verify safetensors structure
|
| 574 |
+
with safe_open(model_path, framework="pt") as f:
|
| 575 |
+
if not f.keys():
|
| 576 |
+
return False, "❌ Invalid safetensors file: no tensors found"
|
| 577 |
+
|
| 578 |
+
# Check for essential components
|
| 579 |
+
required_keys = ["model.diffusion_model", "first_stage_model"]
|
| 580 |
+
missing_keys = []
|
| 581 |
+
|
| 582 |
+
# Load and check key components
|
| 583 |
+
state_dict = load_file(model_path)
|
| 584 |
+
for key in required_keys:
|
| 585 |
+
if not any(k.startswith(key) for k in state_dict.keys()):
|
| 586 |
+
missing_keys.append(key)
|
| 587 |
+
|
| 588 |
+
if missing_keys:
|
| 589 |
+
return False, f"❌ Missing essential components: {', '.join(missing_keys)}"
|
| 590 |
+
|
| 591 |
+
return True, "✅ Model structure verified successfully"
|
| 592 |
+
except Exception as e:
|
| 593 |
+
return False, f"❌ Model verification failed: {str(e)}"
|
| 594 |
+
|
| 595 |
+
def get_auto_optimization_suggestions(model_path: str, precision: str, available_memory: float) -> List[str]:
|
| 596 |
+
"""Generate automatic optimization suggestions based on model and system characteristics."""
|
| 597 |
+
suggestions = []
|
| 598 |
+
|
| 599 |
+
# Memory-based suggestions
|
| 600 |
+
if available_memory < 16:
|
| 601 |
+
suggestions.append("💡 Limited memory detected. Consider these options:")
|
| 602 |
+
suggestions.append(" - Use fp16 precision to reduce memory usage")
|
| 603 |
+
suggestions.append(" - Close other applications before conversion")
|
| 604 |
+
suggestions.append(" - Use a machine with more RAM if available")
|
| 605 |
+
|
| 606 |
+
# Precision-based suggestions
|
| 607 |
+
if precision == "float32" and available_memory < 32:
|
| 608 |
+
suggestions.append("💡 Consider using fp16 precision for better memory efficiency")
|
| 609 |
+
|
| 610 |
+
# Model size-based suggestions
|
| 611 |
+
model_size = get_file_size(model_path) if not is_valid_url(model_path) else None
|
| 612 |
+
if model_size and model_size > 10:
|
| 613 |
+
suggestions.append("💡 Large model detected. Recommendations:")
|
| 614 |
+
suggestions.append(" - Ensure stable internet connection for URL downloads")
|
| 615 |
+
suggestions.append(" - Consider breaking down the conversion process")
|
| 616 |
+
|
| 617 |
+
return suggestions
|
| 618 |
|
| 619 |
def upload_to_huggingface(model_path, hf_token, orgs_name, model_name, make_private, output_widget):
|
| 620 |
"""Uploads a model to the Hugging Face Hub."""
|
|
|
|
| 697 |
return new_name
|
| 698 |
counter += 1
|
| 699 |
|
| 700 |
+
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
| 701 |
+
gr.Markdown("""
|
| 702 |
+
# 🎨 SDXL Model Converter
|
| 703 |
+
Convert SDXL models between different formats and precisions. Works on CPU!
|
| 704 |
+
|
| 705 |
+
### 📥 Input Sources Supported:
|
| 706 |
+
- Local model files (.safetensors, .ckpt, etc.)
|
| 707 |
+
- Direct URLs to model files
|
| 708 |
+
- Hugging Face model repositories (e.g., 'stabilityai/stable-diffusion-xl-base-1.0')
|
| 709 |
+
|
| 710 |
+
### ℹ️ Important Notes:
|
| 711 |
+
- This tool runs on CPU, though conversion might be slower than on GPU
|
| 712 |
+
- For Hugging Face uploads, you need a **WRITE** token (not a read token)
|
| 713 |
+
- Get your HF token here: https://huggingface.co/settings/tokens
|
| 714 |
+
|
| 715 |
+
### 💾 Memory Usage Tips:
|
| 716 |
+
- Use FP16 precision when possible to reduce memory usage
|
| 717 |
+
- Close other applications during conversion
|
| 718 |
+
- For large models, ensure you have at least 16GB of RAM
|
| 719 |
""")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 720 |
with gr.Row():
|
| 721 |
+
with gr.Column():
|
| 722 |
+
model_to_load = gr.Textbox(
|
| 723 |
+
label="Model Path/URL/HF Repo",
|
| 724 |
+
placeholder="Enter local path, URL, or Hugging Face model ID (e.g., stabilityai/stable-diffusion-xl-base-1.0)",
|
| 725 |
+
type="text"
|
| 726 |
+
)
|
| 727 |
+
|
| 728 |
+
save_precision_as = gr.Dropdown(
|
| 729 |
+
choices=["float32", "float16", "bfloat16"],
|
| 730 |
+
value="float16",
|
| 731 |
+
label="Save Precision",
|
| 732 |
+
info="Choose model precision (float16 recommended for most cases)"
|
| 733 |
+
)
|
| 734 |
|
| 735 |
+
with gr.Row():
|
| 736 |
+
epoch = gr.Number(
|
| 737 |
+
value=0,
|
| 738 |
+
label="Epoch",
|
| 739 |
+
precision=0,
|
| 740 |
+
info="Optional: Set epoch number for the saved model"
|
| 741 |
+
)
|
| 742 |
+
global_step = gr.Number(
|
| 743 |
+
value=0,
|
| 744 |
+
label="Global Step",
|
| 745 |
+
precision=0,
|
| 746 |
+
info="Optional: Set training step for the saved model"
|
| 747 |
+
)
|
| 748 |
|
| 749 |
+
reference_model = gr.Textbox(
|
| 750 |
+
label="Reference Model (Optional)",
|
| 751 |
+
placeholder="Path to reference model for scheduler config",
|
| 752 |
+
info="Optional: Used to copy scheduler configuration"
|
| 753 |
+
)
|
| 754 |
+
|
| 755 |
+
fp16 = gr.Checkbox(
|
| 756 |
+
label="Load in FP16",
|
| 757 |
+
value=True,
|
| 758 |
+
info="Load model in half precision (recommended for CPU usage)"
|
| 759 |
+
)
|
| 760 |
+
|
| 761 |
+
# Hugging Face Upload Section
|
| 762 |
+
gr.Markdown("### Upload to Hugging Face (Optional)")
|
| 763 |
+
|
| 764 |
+
hf_token = gr.Textbox(
|
| 765 |
+
label="Hugging Face Token",
|
| 766 |
+
placeholder="Enter your WRITE token from huggingface.co/settings/tokens",
|
| 767 |
+
type="password",
|
| 768 |
+
info=" Must be a WRITE token, not a read token!"
|
| 769 |
+
)
|
| 770 |
+
|
| 771 |
+
with gr.Row():
|
| 772 |
+
orgs_name = gr.Textbox(
|
| 773 |
+
label="Organization Name",
|
| 774 |
+
placeholder="Optional: Your organization name",
|
| 775 |
+
info="Leave empty to use your personal account"
|
| 776 |
+
)
|
| 777 |
+
model_name = gr.Textbox(
|
| 778 |
+
label="Model Name",
|
| 779 |
+
placeholder="Name for your uploaded model",
|
| 780 |
+
info="The name your model will have on Hugging Face"
|
| 781 |
+
)
|
| 782 |
|
| 783 |
+
make_private = gr.Checkbox(
|
| 784 |
+
label="Make Private",
|
| 785 |
+
value=True,
|
| 786 |
+
info="Keep the uploaded model private on Hugging Face"
|
| 787 |
+
)
|
| 788 |
|
| 789 |
+
with gr.Column():
|
| 790 |
+
output = gr.Markdown(label="Output")
|
| 791 |
+
convert_btn = gr.Button("Convert Model", variant="primary")
|
| 792 |
+
convert_btn.click(
|
| 793 |
+
fn=main,
|
| 794 |
+
inputs=[
|
| 795 |
+
model_to_load,
|
| 796 |
+
save_precision_as,
|
| 797 |
+
epoch,
|
| 798 |
+
global_step,
|
| 799 |
+
reference_model,
|
| 800 |
+
fp16,
|
| 801 |
+
hf_token,
|
| 802 |
+
orgs_name,
|
| 803 |
+
model_name,
|
| 804 |
+
make_private
|
| 805 |
+
],
|
| 806 |
+
outputs=output
|
| 807 |
+
)
|
| 808 |
|
| 809 |
demo.launch()
|
requirements.txt
CHANGED
|
@@ -1,12 +1,30 @@
|
|
| 1 |
-
|
| 2 |
-
|
| 3 |
-
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Core dependencies
|
| 2 |
+
numpy>=1.26.4
|
| 3 |
+
torch>=2.0.0
|
| 4 |
+
diffusers>=0.21.4
|
| 5 |
+
transformers>=4.30.0
|
| 6 |
+
einops>=0.7.0
|
| 7 |
+
open-clip-torch>=2.23.0
|
| 8 |
+
|
| 9 |
+
# UI and interface
|
| 10 |
+
gradio>=3.50.2
|
| 11 |
+
|
| 12 |
+
# Model handling
|
| 13 |
+
safetensors>=0.3.1
|
| 14 |
+
accelerate>=0.23.0
|
| 15 |
+
|
| 16 |
+
# Utilities
|
| 17 |
+
psutil>=5.9.0
|
| 18 |
+
requests>=2.31.0
|
| 19 |
+
tqdm>=4.65.0
|
| 20 |
+
gdown>=4.7.1
|
| 21 |
+
|
| 22 |
+
# Type checking and validation
|
| 23 |
+
typing-extensions>=4.8.0
|
| 24 |
+
pydantic>=2.0.0
|
| 25 |
+
|
| 26 |
+
# File handling and compression
|
| 27 |
+
fsspec>=2023.0.0
|
| 28 |
+
filelock>=3.13.0
|
| 29 |
+
|
| 30 |
+
# Note: This app is hosted on Hugging Face Spaces, so ensure compatibility with their environment.
|