Update app.py
Browse files
app.py
CHANGED
|
@@ -3,15 +3,23 @@ import random
|
|
| 3 |
|
| 4 |
import gradio as gr
|
| 5 |
import numpy as np
|
| 6 |
-
|
| 7 |
import torch
|
| 8 |
import torchvision.transforms.functional as TF
|
|
|
|
| 9 |
from diffusers import ControlNetModel, StableDiffusionXLControlNetPipeline, AutoencoderKL
|
| 10 |
from diffusers import DDIMScheduler, EulerAncestralDiscreteScheduler
|
| 11 |
from controlnet_aux import PidiNetDetector, HEDdetector
|
| 12 |
from diffusers.utils import load_image
|
| 13 |
from huggingface_hub import HfApi
|
| 14 |
from pathlib import Path
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
from gradio_imageslider import ImageSlider
|
| 16 |
|
| 17 |
js_func = """
|
|
@@ -19,7 +27,6 @@ function refresh() {
|
|
| 19 |
const url = new URL(window.location);
|
| 20 |
}
|
| 21 |
"""
|
| 22 |
-
|
| 23 |
def nms(x, t, s):
|
| 24 |
x = cv2.GaussianBlur(x.astype(np.float32), (0, 0), s)
|
| 25 |
|
|
@@ -58,7 +65,7 @@ def HWC3(x):
|
|
| 58 |
DESCRIPTION = ''''''
|
| 59 |
|
| 60 |
if not torch.cuda.is_available():
|
| 61 |
-
DESCRIPTION += "
|
| 62 |
|
| 63 |
style_list = [
|
| 64 |
{
|
|
@@ -117,17 +124,26 @@ styles = {k["name"]: (k["prompt"], k["negative_prompt"]) for k in style_list}
|
|
| 117 |
STYLE_NAMES = list(styles.keys())
|
| 118 |
DEFAULT_STYLE_NAME = "(No style)"
|
| 119 |
|
| 120 |
-
|
|
|
|
| 121 |
p, n = styles.get(style_name, styles[DEFAULT_STYLE_NAME])
|
| 122 |
return p.replace("{prompt}", positive), n + negative
|
| 123 |
|
|
|
|
| 124 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 125 |
|
| 126 |
eulera_scheduler = EulerAncestralDiscreteScheduler.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", subfolder="scheduler")
|
| 127 |
|
| 128 |
-
controlnet = ControlNetModel.from_pretrained("xinsir/controlnet-scribble-sdxl-1.0", torch_dtype=torch.float16)
|
| 129 |
-
controlnet_canny = ControlNetModel.from_pretrained("xinsir/controlnet-canny-sdxl-1.0", torch_dtype=torch.float16)
|
| 130 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 131 |
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
|
| 132 |
|
| 133 |
pipe = StableDiffusionXLControlNetPipeline.from_pretrained(
|
|
@@ -138,7 +154,7 @@ pipe = StableDiffusionXLControlNetPipeline.from_pretrained(
|
|
| 138 |
scheduler=eulera_scheduler,
|
| 139 |
)
|
| 140 |
pipe.to(device)
|
| 141 |
-
|
| 142 |
pipe_canny = StableDiffusionXLControlNetPipeline.from_pretrained(
|
| 143 |
"stabilityai/stable-diffusion-xl-base-1.0",
|
| 144 |
controlnet=controlnet_canny,
|
|
@@ -147,51 +163,60 @@ pipe_canny = StableDiffusionXLControlNetPipeline.from_pretrained(
|
|
| 147 |
torch_dtype=torch.float16,
|
| 148 |
scheduler=eulera_scheduler,
|
| 149 |
)
|
|
|
|
| 150 |
pipe_canny.to(device)
|
| 151 |
|
| 152 |
MAX_SEED = np.iinfo(np.int32).max
|
| 153 |
processor = HEDdetector.from_pretrained('lllyasviel/Annotators')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 154 |
|
| 155 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 156 |
if randomize_seed:
|
| 157 |
seed = random.randint(0, MAX_SEED)
|
| 158 |
return seed
|
| 159 |
|
| 160 |
-
@
|
| 161 |
-
image=dict,
|
| 162 |
-
prompt=str,
|
| 163 |
-
negative_prompt=str,
|
| 164 |
-
style_name=str,
|
| 165 |
-
num_steps=int,
|
| 166 |
-
guidance_scale=float,
|
| 167 |
-
controlnet_conditioning_scale=float,
|
| 168 |
-
seed=int,
|
| 169 |
-
use_hed=bool,
|
| 170 |
-
use_canny=bool,
|
| 171 |
-
controlnet_img=Image,
|
| 172 |
-
out=Image,
|
| 173 |
-
)
|
| 174 |
def run(
|
| 175 |
-
image,
|
| 176 |
-
prompt,
|
| 177 |
-
negative_prompt,
|
| 178 |
-
style_name=DEFAULT_STYLE_NAME,
|
| 179 |
-
num_steps=25,
|
| 180 |
-
guidance_scale=5,
|
| 181 |
-
controlnet_conditioning_scale=1.0,
|
| 182 |
-
seed=0,
|
| 183 |
-
use_hed=False,
|
| 184 |
-
use_canny=False,
|
| 185 |
progress=gr.Progress(track_tqdm=True),
|
| 186 |
-
):
|
|
|
|
| 187 |
composite_image = image['composite']
|
| 188 |
width, height = composite_image.size
|
|
|
|
|
|
|
| 189 |
max_size = 1024
|
| 190 |
ratio = min(max_size / width, max_size / height)
|
| 191 |
new_width = int(width * ratio)
|
| 192 |
new_height = int(height * ratio)
|
|
|
|
|
|
|
| 193 |
resized_image = composite_image.resize((new_width, new_height), Image.LANCZOS)
|
| 194 |
-
|
| 195 |
if use_canny:
|
| 196 |
controlnet_img = np.array(resized_image)
|
| 197 |
controlnet_img = cv2.Canny(controlnet_img, 100, 200)
|
|
@@ -209,11 +234,11 @@ def run(
|
|
| 209 |
controlnet_img[controlnet_img > random_val] = 255
|
| 210 |
controlnet_img[controlnet_img < 255] = 0
|
| 211 |
image = Image.fromarray(controlnet_img)
|
| 212 |
-
|
| 213 |
prompt, negative_prompt = apply_style(style_name, prompt, negative_prompt)
|
| 214 |
|
| 215 |
generator = torch.Generator(device=device).manual_seed(seed)
|
| 216 |
-
|
| 217 |
if use_canny:
|
| 218 |
out = pipe_canny(
|
| 219 |
prompt=prompt,
|
|
@@ -245,50 +270,58 @@ with gr.Blocks(css="style.css", js=js_func) as demo:
|
|
| 245 |
gr.Markdown(DESCRIPTION, elem_id="description")
|
| 246 |
gr.DuplicateButton(
|
| 247 |
value="Duplicate Space for private use",
|
| 248 |
-
|
| 249 |
-
|
| 250 |
-
|
| 251 |
-
|
| 252 |
-
|
| 253 |
-
|
| 254 |
-
|
| 255 |
-
|
| 256 |
-
|
| 257 |
-
|
| 258 |
-
|
| 259 |
-
|
| 260 |
-
|
| 261 |
-
|
| 262 |
-
|
| 263 |
-
|
| 264 |
-
|
| 265 |
-
|
| 266 |
-
|
| 267 |
-
|
| 268 |
-
|
| 269 |
-
|
| 270 |
-
|
| 271 |
-
|
| 272 |
-
|
| 273 |
-
|
| 274 |
-
|
| 275 |
-
|
| 276 |
-
|
| 277 |
-
|
| 278 |
-
|
| 279 |
-
|
| 280 |
-
|
| 281 |
-
|
| 282 |
-
|
| 283 |
-
|
| 284 |
-
|
| 285 |
-
|
| 286 |
-
|
| 287 |
-
|
| 288 |
-
|
| 289 |
-
|
| 290 |
-
|
| 291 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 292 |
|
| 293 |
inputs = [
|
| 294 |
image,
|
|
@@ -303,7 +336,6 @@ with gr.Blocks(css="style.css", js=js_func) as demo:
|
|
| 303 |
use_canny
|
| 304 |
]
|
| 305 |
outputs = [image_slider]
|
| 306 |
-
|
| 307 |
run_button.click(
|
| 308 |
fn=randomize_seed_fn,
|
| 309 |
inputs=[seed, randomize_seed],
|
|
@@ -313,5 +345,7 @@ with gr.Blocks(css="style.css", js=js_func) as demo:
|
|
| 313 |
).then(lambda x: None, inputs=None, outputs=image_slider).then(
|
| 314 |
fn=run, inputs=inputs, outputs=outputs
|
| 315 |
)
|
|
|
|
|
|
|
| 316 |
|
| 317 |
-
demo.queue().launch(
|
|
|
|
| 3 |
|
| 4 |
import gradio as gr
|
| 5 |
import numpy as np
|
| 6 |
+
import PIL.Image
|
| 7 |
import torch
|
| 8 |
import torchvision.transforms.functional as TF
|
| 9 |
+
|
| 10 |
from diffusers import ControlNetModel, StableDiffusionXLControlNetPipeline, AutoencoderKL
|
| 11 |
from diffusers import DDIMScheduler, EulerAncestralDiscreteScheduler
|
| 12 |
from controlnet_aux import PidiNetDetector, HEDdetector
|
| 13 |
from diffusers.utils import load_image
|
| 14 |
from huggingface_hub import HfApi
|
| 15 |
from pathlib import Path
|
| 16 |
+
from PIL import Image, ImageOps
|
| 17 |
+
import torch
|
| 18 |
+
import numpy as np
|
| 19 |
+
import cv2
|
| 20 |
+
import os
|
| 21 |
+
import random
|
| 22 |
+
import spaces
|
| 23 |
from gradio_imageslider import ImageSlider
|
| 24 |
|
| 25 |
js_func = """
|
|
|
|
| 27 |
const url = new URL(window.location);
|
| 28 |
}
|
| 29 |
"""
|
|
|
|
| 30 |
def nms(x, t, s):
|
| 31 |
x = cv2.GaussianBlur(x.astype(np.float32), (0, 0), s)
|
| 32 |
|
|
|
|
| 65 |
DESCRIPTION = ''''''
|
| 66 |
|
| 67 |
if not torch.cuda.is_available():
|
| 68 |
+
DESCRIPTION += ""
|
| 69 |
|
| 70 |
style_list = [
|
| 71 |
{
|
|
|
|
| 124 |
STYLE_NAMES = list(styles.keys())
|
| 125 |
DEFAULT_STYLE_NAME = "(No style)"
|
| 126 |
|
| 127 |
+
|
| 128 |
+
def apply_style(style_name: str, positive: str, negative: str = "") -> tuple[str, str]:
|
| 129 |
p, n = styles.get(style_name, styles[DEFAULT_STYLE_NAME])
|
| 130 |
return p.replace("{prompt}", positive), n + negative
|
| 131 |
|
| 132 |
+
|
| 133 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 134 |
|
| 135 |
eulera_scheduler = EulerAncestralDiscreteScheduler.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", subfolder="scheduler")
|
| 136 |
|
|
|
|
|
|
|
| 137 |
|
| 138 |
+
controlnet = ControlNetModel.from_pretrained(
|
| 139 |
+
"xinsir/controlnet-scribble-sdxl-1.0",
|
| 140 |
+
torch_dtype=torch.float16
|
| 141 |
+
)
|
| 142 |
+
controlnet_canny = ControlNetModel.from_pretrained(
|
| 143 |
+
"xinsir/controlnet-canny-sdxl-1.0",
|
| 144 |
+
torch_dtype=torch.float16
|
| 145 |
+
)
|
| 146 |
+
# when test with other base model, you need to change the vae also.
|
| 147 |
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
|
| 148 |
|
| 149 |
pipe = StableDiffusionXLControlNetPipeline.from_pretrained(
|
|
|
|
| 154 |
scheduler=eulera_scheduler,
|
| 155 |
)
|
| 156 |
pipe.to(device)
|
| 157 |
+
# Load model.
|
| 158 |
pipe_canny = StableDiffusionXLControlNetPipeline.from_pretrained(
|
| 159 |
"stabilityai/stable-diffusion-xl-base-1.0",
|
| 160 |
controlnet=controlnet_canny,
|
|
|
|
| 163 |
torch_dtype=torch.float16,
|
| 164 |
scheduler=eulera_scheduler,
|
| 165 |
)
|
| 166 |
+
|
| 167 |
pipe_canny.to(device)
|
| 168 |
|
| 169 |
MAX_SEED = np.iinfo(np.int32).max
|
| 170 |
processor = HEDdetector.from_pretrained('lllyasviel/Annotators')
|
| 171 |
+
def nms(x, t, s):
|
| 172 |
+
x = cv2.GaussianBlur(x.astype(np.float32), (0, 0), s)
|
| 173 |
+
|
| 174 |
+
f1 = np.array([[0, 0, 0], [1, 1, 1], [0, 0, 0]], dtype=np.uint8)
|
| 175 |
+
f2 = np.array([[0, 1, 0], [0, 1, 0], [0, 1, 0]], dtype=np.uint8)
|
| 176 |
+
f3 = np.array([[1, 0, 0], [0, 1, 0], [0, 0, 1]], dtype=np.uint8)
|
| 177 |
+
f4 = np.array([[0, 0, 1], [0, 1, 0], [1, 0, 0]], dtype=np.uint8)
|
| 178 |
+
|
| 179 |
+
y = np.zeros_like(x)
|
| 180 |
+
|
| 181 |
+
for f in [f1, f2, f3, f4]:
|
| 182 |
+
np.putmask(y, cv2.dilate(x, kernel=f) == x, x)
|
| 183 |
|
| 184 |
+
z = np.zeros_like(y, dtype=np.uint8)
|
| 185 |
+
z[y > t] = 255
|
| 186 |
+
return z
|
| 187 |
+
|
| 188 |
+
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
|
| 189 |
if randomize_seed:
|
| 190 |
seed = random.randint(0, MAX_SEED)
|
| 191 |
return seed
|
| 192 |
|
| 193 |
+
@spaces.GPU
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 194 |
def run(
|
| 195 |
+
image: dict,
|
| 196 |
+
prompt: str,
|
| 197 |
+
negative_prompt: str,
|
| 198 |
+
style_name: str = DEFAULT_STYLE_NAME,
|
| 199 |
+
num_steps: int = 25,
|
| 200 |
+
guidance_scale: float = 5,
|
| 201 |
+
controlnet_conditioning_scale: float = 1.0,
|
| 202 |
+
seed: int = 0,
|
| 203 |
+
use_hed: bool = False,
|
| 204 |
+
use_canny: bool = False,
|
| 205 |
progress=gr.Progress(track_tqdm=True),
|
| 206 |
+
) -> PIL.Image.Image:
|
| 207 |
+
# Get the composite image from the EditorValue dict
|
| 208 |
composite_image = image['composite']
|
| 209 |
width, height = composite_image.size
|
| 210 |
+
|
| 211 |
+
# Calculate new dimensions to fit within 1024x1024 while maintaining aspect ratio
|
| 212 |
max_size = 1024
|
| 213 |
ratio = min(max_size / width, max_size / height)
|
| 214 |
new_width = int(width * ratio)
|
| 215 |
new_height = int(height * ratio)
|
| 216 |
+
|
| 217 |
+
# Resize the image
|
| 218 |
resized_image = composite_image.resize((new_width, new_height), Image.LANCZOS)
|
| 219 |
+
|
| 220 |
if use_canny:
|
| 221 |
controlnet_img = np.array(resized_image)
|
| 222 |
controlnet_img = cv2.Canny(controlnet_img, 100, 200)
|
|
|
|
| 234 |
controlnet_img[controlnet_img > random_val] = 255
|
| 235 |
controlnet_img[controlnet_img < 255] = 0
|
| 236 |
image = Image.fromarray(controlnet_img)
|
| 237 |
+
|
| 238 |
prompt, negative_prompt = apply_style(style_name, prompt, negative_prompt)
|
| 239 |
|
| 240 |
generator = torch.Generator(device=device).manual_seed(seed)
|
| 241 |
+
|
| 242 |
if use_canny:
|
| 243 |
out = pipe_canny(
|
| 244 |
prompt=prompt,
|
|
|
|
| 270 |
gr.Markdown(DESCRIPTION, elem_id="description")
|
| 271 |
gr.DuplicateButton(
|
| 272 |
value="Duplicate Space for private use",
|
| 273 |
+
elem_id="duplicate-button",
|
| 274 |
+
visible=os.getenv("SHOW_DUPLICATE_BUTTON") == "1",
|
| 275 |
+
)
|
| 276 |
+
|
| 277 |
+
with gr.Row():
|
| 278 |
+
with gr.Column():
|
| 279 |
+
with gr.Group():
|
| 280 |
+
image = gr.ImageEditor(type="pil", label="Sketch your image or upload one", width=512, height=512)
|
| 281 |
+
prompt = gr.Textbox(label="Prompt")
|
| 282 |
+
style = gr.Dropdown(label="Style", choices=STYLE_NAMES, value=DEFAULT_STYLE_NAME)
|
| 283 |
+
use_hed = gr.Checkbox(label="use HED detector", value=False, info="check this box if you upload an image and want to turn it to a sketch")
|
| 284 |
+
use_canny = gr.Checkbox(label="use Canny", value=False, info="check this to use ControlNet canny instead of scribble")
|
| 285 |
+
run_button = gr.Button("Run")
|
| 286 |
+
with gr.Accordion("Advanced options", open=False):
|
| 287 |
+
negative_prompt = gr.Textbox(
|
| 288 |
+
label="Negative prompt",
|
| 289 |
+
value="longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality",
|
| 290 |
+
)
|
| 291 |
+
num_steps = gr.Slider(
|
| 292 |
+
label="Number of steps",
|
| 293 |
+
minimum=1,
|
| 294 |
+
maximum=50,
|
| 295 |
+
step=1,
|
| 296 |
+
value=25,
|
| 297 |
+
)
|
| 298 |
+
guidance_scale = gr.Slider(
|
| 299 |
+
label="Guidance scale",
|
| 300 |
+
minimum=0.1,
|
| 301 |
+
maximum=10.0,
|
| 302 |
+
step=0.1,
|
| 303 |
+
value=5,
|
| 304 |
+
)
|
| 305 |
+
controlnet_conditioning_scale = gr.Slider(
|
| 306 |
+
label="controlnet conditioning scale",
|
| 307 |
+
minimum=0.5,
|
| 308 |
+
maximum=5.0,
|
| 309 |
+
step=0.1,
|
| 310 |
+
value=0.9,
|
| 311 |
+
)
|
| 312 |
+
seed = gr.Slider(
|
| 313 |
+
label="Seed",
|
| 314 |
+
minimum=0,
|
| 315 |
+
maximum=MAX_SEED,
|
| 316 |
+
step=1,
|
| 317 |
+
value=0,
|
| 318 |
+
)
|
| 319 |
+
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
| 320 |
+
|
| 321 |
+
with gr.Column():
|
| 322 |
+
with gr.Group():
|
| 323 |
+
image_slider = ImageSlider(position=0.5)
|
| 324 |
+
|
| 325 |
|
| 326 |
inputs = [
|
| 327 |
image,
|
|
|
|
| 336 |
use_canny
|
| 337 |
]
|
| 338 |
outputs = [image_slider]
|
|
|
|
| 339 |
run_button.click(
|
| 340 |
fn=randomize_seed_fn,
|
| 341 |
inputs=[seed, randomize_seed],
|
|
|
|
| 345 |
).then(lambda x: None, inputs=None, outputs=image_slider).then(
|
| 346 |
fn=run, inputs=inputs, outputs=outputs
|
| 347 |
)
|
| 348 |
+
|
| 349 |
+
|
| 350 |
|
| 351 |
+
demo.queue().launch(show_error=True)
|