Spaces:
Running
on
Zero
Running
on
Zero
| # Copyright 2023 The HuggingFace Team. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| from typing import Callable, Dict, List, Optional, Union | |
| import torch | |
| from transformers import CLIPTextModel, CLIPTokenizer | |
| from ...schedulers import DDPMWuerstchenScheduler | |
| from ...utils import deprecate, replace_example_docstring | |
| from ..pipeline_utils import DiffusionPipeline | |
| from .modeling_paella_vq_model import PaellaVQModel | |
| from .modeling_wuerstchen_diffnext import WuerstchenDiffNeXt | |
| from .modeling_wuerstchen_prior import WuerstchenPrior | |
| from .pipeline_wuerstchen import WuerstchenDecoderPipeline | |
| from .pipeline_wuerstchen_prior import WuerstchenPriorPipeline | |
| TEXT2IMAGE_EXAMPLE_DOC_STRING = """ | |
| Examples: | |
| ```py | |
| >>> from diffusions import WuerstchenCombinedPipeline | |
| >>> pipe = WuerstchenCombinedPipeline.from_pretrained("warp-ai/Wuerstchen", torch_dtype=torch.float16).to( | |
| ... "cuda" | |
| ... ) | |
| >>> prompt = "an image of a shiba inu, donning a spacesuit and helmet" | |
| >>> images = pipe(prompt=prompt) | |
| ``` | |
| """ | |
| class WuerstchenCombinedPipeline(DiffusionPipeline): | |
| """ | |
| Combined Pipeline for text-to-image generation using Wuerstchen | |
| This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the | |
| library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.) | |
| Args: | |
| tokenizer (`CLIPTokenizer`): | |
| The decoder tokenizer to be used for text inputs. | |
| text_encoder (`CLIPTextModel`): | |
| The decoder text encoder to be used for text inputs. | |
| decoder (`WuerstchenDiffNeXt`): | |
| The decoder model to be used for decoder image generation pipeline. | |
| scheduler (`DDPMWuerstchenScheduler`): | |
| The scheduler to be used for decoder image generation pipeline. | |
| vqgan (`PaellaVQModel`): | |
| The VQGAN model to be used for decoder image generation pipeline. | |
| prior_tokenizer (`CLIPTokenizer`): | |
| The prior tokenizer to be used for text inputs. | |
| prior_text_encoder (`CLIPTextModel`): | |
| The prior text encoder to be used for text inputs. | |
| prior_prior (`WuerstchenPrior`): | |
| The prior model to be used for prior pipeline. | |
| prior_scheduler (`DDPMWuerstchenScheduler`): | |
| The scheduler to be used for prior pipeline. | |
| """ | |
| _load_connected_pipes = True | |
| def __init__( | |
| self, | |
| tokenizer: CLIPTokenizer, | |
| text_encoder: CLIPTextModel, | |
| decoder: WuerstchenDiffNeXt, | |
| scheduler: DDPMWuerstchenScheduler, | |
| vqgan: PaellaVQModel, | |
| prior_tokenizer: CLIPTokenizer, | |
| prior_text_encoder: CLIPTextModel, | |
| prior_prior: WuerstchenPrior, | |
| prior_scheduler: DDPMWuerstchenScheduler, | |
| ): | |
| super().__init__() | |
| self.register_modules( | |
| text_encoder=text_encoder, | |
| tokenizer=tokenizer, | |
| decoder=decoder, | |
| scheduler=scheduler, | |
| vqgan=vqgan, | |
| prior_prior=prior_prior, | |
| prior_text_encoder=prior_text_encoder, | |
| prior_tokenizer=prior_tokenizer, | |
| prior_scheduler=prior_scheduler, | |
| ) | |
| self.prior_pipe = WuerstchenPriorPipeline( | |
| prior=prior_prior, | |
| text_encoder=prior_text_encoder, | |
| tokenizer=prior_tokenizer, | |
| scheduler=prior_scheduler, | |
| ) | |
| self.decoder_pipe = WuerstchenDecoderPipeline( | |
| text_encoder=text_encoder, | |
| tokenizer=tokenizer, | |
| decoder=decoder, | |
| scheduler=scheduler, | |
| vqgan=vqgan, | |
| ) | |
| def enable_xformers_memory_efficient_attention(self, attention_op: Optional[Callable] = None): | |
| self.decoder_pipe.enable_xformers_memory_efficient_attention(attention_op) | |
| def enable_model_cpu_offload(self, gpu_id=0): | |
| r""" | |
| Offloads all models to CPU using accelerate, reducing memory usage with a low impact on performance. Compared | |
| to `enable_sequential_cpu_offload`, this method moves one whole model at a time to the GPU when its `forward` | |
| method is called, and the model remains in GPU until the next model runs. Memory savings are lower than with | |
| `enable_sequential_cpu_offload`, but performance is much better due to the iterative execution of the `unet`. | |
| """ | |
| self.prior_pipe.enable_model_cpu_offload(gpu_id=gpu_id) | |
| self.decoder_pipe.enable_model_cpu_offload(gpu_id=gpu_id) | |
| def enable_sequential_cpu_offload(self, gpu_id=0): | |
| r""" | |
| Offloads all models (`unet`, `text_encoder`, `vae`, and `safety checker` state dicts) to CPU using 🤗 | |
| Accelerate, significantly reducing memory usage. Models are moved to a `torch.device('meta')` and loaded on a | |
| GPU only when their specific submodule's `forward` method is called. Offloading happens on a submodule basis. | |
| Memory savings are higher than using `enable_model_cpu_offload`, but performance is lower. | |
| """ | |
| self.prior_pipe.enable_sequential_cpu_offload(gpu_id=gpu_id) | |
| self.decoder_pipe.enable_sequential_cpu_offload(gpu_id=gpu_id) | |
| def progress_bar(self, iterable=None, total=None): | |
| self.prior_pipe.progress_bar(iterable=iterable, total=total) | |
| self.decoder_pipe.progress_bar(iterable=iterable, total=total) | |
| def set_progress_bar_config(self, **kwargs): | |
| self.prior_pipe.set_progress_bar_config(**kwargs) | |
| self.decoder_pipe.set_progress_bar_config(**kwargs) | |
| def __call__( | |
| self, | |
| prompt: Optional[Union[str, List[str]]] = None, | |
| height: int = 512, | |
| width: int = 512, | |
| prior_num_inference_steps: int = 60, | |
| prior_timesteps: Optional[List[float]] = None, | |
| prior_guidance_scale: float = 4.0, | |
| num_inference_steps: int = 12, | |
| decoder_timesteps: Optional[List[float]] = None, | |
| decoder_guidance_scale: float = 0.0, | |
| negative_prompt: Optional[Union[str, List[str]]] = None, | |
| prompt_embeds: Optional[torch.FloatTensor] = None, | |
| negative_prompt_embeds: Optional[torch.FloatTensor] = None, | |
| num_images_per_prompt: int = 1, | |
| generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | |
| latents: Optional[torch.FloatTensor] = None, | |
| output_type: Optional[str] = "pil", | |
| return_dict: bool = True, | |
| prior_callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None, | |
| prior_callback_on_step_end_tensor_inputs: List[str] = ["latents"], | |
| callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None, | |
| callback_on_step_end_tensor_inputs: List[str] = ["latents"], | |
| **kwargs, | |
| ): | |
| """ | |
| Function invoked when calling the pipeline for generation. | |
| Args: | |
| prompt (`str` or `List[str]`): | |
| The prompt or prompts to guide the image generation for the prior and decoder. | |
| negative_prompt (`str` or `List[str]`, *optional*): | |
| The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored | |
| if `guidance_scale` is less than `1`). | |
| prompt_embeds (`torch.FloatTensor`, *optional*): | |
| Pre-generated text embeddings for the prior. Can be used to easily tweak text inputs, *e.g.* prompt | |
| weighting. If not provided, text embeddings will be generated from `prompt` input argument. | |
| negative_prompt_embeds (`torch.FloatTensor`, *optional*): | |
| Pre-generated negative text embeddings for the prior. Can be used to easily tweak text inputs, *e.g.* | |
| prompt weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` | |
| input argument. | |
| num_images_per_prompt (`int`, *optional*, defaults to 1): | |
| The number of images to generate per prompt. | |
| height (`int`, *optional*, defaults to 512): | |
| The height in pixels of the generated image. | |
| width (`int`, *optional*, defaults to 512): | |
| The width in pixels of the generated image. | |
| prior_guidance_scale (`float`, *optional*, defaults to 4.0): | |
| Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). | |
| `prior_guidance_scale` is defined as `w` of equation 2. of [Imagen | |
| Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting | |
| `prior_guidance_scale > 1`. Higher guidance scale encourages to generate images that are closely linked | |
| to the text `prompt`, usually at the expense of lower image quality. | |
| prior_num_inference_steps (`Union[int, Dict[float, int]]`, *optional*, defaults to 60): | |
| The number of prior denoising steps. More denoising steps usually lead to a higher quality image at the | |
| expense of slower inference. For more specific timestep spacing, you can pass customized | |
| `prior_timesteps` | |
| num_inference_steps (`int`, *optional*, defaults to 12): | |
| The number of decoder denoising steps. More denoising steps usually lead to a higher quality image at | |
| the expense of slower inference. For more specific timestep spacing, you can pass customized | |
| `timesteps` | |
| prior_timesteps (`List[float]`, *optional*): | |
| Custom timesteps to use for the denoising process for the prior. If not defined, equal spaced | |
| `prior_num_inference_steps` timesteps are used. Must be in descending order. | |
| decoder_timesteps (`List[float]`, *optional*): | |
| Custom timesteps to use for the denoising process for the decoder. If not defined, equal spaced | |
| `num_inference_steps` timesteps are used. Must be in descending order. | |
| decoder_guidance_scale (`float`, *optional*, defaults to 0.0): | |
| Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). | |
| `guidance_scale` is defined as `w` of equation 2. of [Imagen | |
| Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > | |
| 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, | |
| usually at the expense of lower image quality. | |
| generator (`torch.Generator` or `List[torch.Generator]`, *optional*): | |
| One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) | |
| to make generation deterministic. | |
| latents (`torch.FloatTensor`, *optional*): | |
| Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image | |
| generation. Can be used to tweak the same generation with different prompts. If not provided, a latents | |
| tensor will ge generated by sampling using the supplied random `generator`. | |
| output_type (`str`, *optional*, defaults to `"pil"`): | |
| The output format of the generate image. Choose between: `"pil"` (`PIL.Image.Image`), `"np"` | |
| (`np.array`) or `"pt"` (`torch.Tensor`). | |
| return_dict (`bool`, *optional*, defaults to `True`): | |
| Whether or not to return a [`~pipelines.ImagePipelineOutput`] instead of a plain tuple. | |
| prior_callback_on_step_end (`Callable`, *optional*): | |
| A function that calls at the end of each denoising steps during the inference. The function is called | |
| with the following arguments: `prior_callback_on_step_end(self: DiffusionPipeline, step: int, timestep: | |
| int, callback_kwargs: Dict)`. | |
| prior_callback_on_step_end_tensor_inputs (`List`, *optional*): | |
| The list of tensor inputs for the `prior_callback_on_step_end` function. The tensors specified in the | |
| list will be passed as `callback_kwargs` argument. You will only be able to include variables listed in | |
| the `._callback_tensor_inputs` attribute of your pipeline class. | |
| callback_on_step_end (`Callable`, *optional*): | |
| A function that calls at the end of each denoising steps during the inference. The function is called | |
| with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int, | |
| callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by | |
| `callback_on_step_end_tensor_inputs`. | |
| callback_on_step_end_tensor_inputs (`List`, *optional*): | |
| The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list | |
| will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the | |
| `._callback_tensor_inputs` attribute of your pipeline class. | |
| Examples: | |
| Returns: | |
| [`~pipelines.ImagePipelineOutput`] or `tuple` [`~pipelines.ImagePipelineOutput`] if `return_dict` is True, | |
| otherwise a `tuple`. When returning a tuple, the first element is a list with the generated images. | |
| """ | |
| prior_kwargs = {} | |
| if kwargs.get("prior_callback", None) is not None: | |
| prior_kwargs["callback"] = kwargs.pop("prior_callback") | |
| deprecate( | |
| "prior_callback", | |
| "1.0.0", | |
| "Passing `prior_callback` as an input argument to `__call__` is deprecated, consider use `prior_callback_on_step_end`", | |
| ) | |
| if kwargs.get("prior_callback_steps", None) is not None: | |
| deprecate( | |
| "prior_callback_steps", | |
| "1.0.0", | |
| "Passing `prior_callback_steps` as an input argument to `__call__` is deprecated, consider use `prior_callback_on_step_end`", | |
| ) | |
| prior_kwargs["callback_steps"] = kwargs.pop("prior_callback_steps") | |
| prior_outputs = self.prior_pipe( | |
| prompt=prompt if prompt_embeds is None else None, | |
| height=height, | |
| width=width, | |
| num_inference_steps=prior_num_inference_steps, | |
| timesteps=prior_timesteps, | |
| guidance_scale=prior_guidance_scale, | |
| negative_prompt=negative_prompt if negative_prompt_embeds is None else None, | |
| prompt_embeds=prompt_embeds, | |
| negative_prompt_embeds=negative_prompt_embeds, | |
| num_images_per_prompt=num_images_per_prompt, | |
| generator=generator, | |
| latents=latents, | |
| output_type="pt", | |
| return_dict=False, | |
| callback_on_step_end=prior_callback_on_step_end, | |
| callback_on_step_end_tensor_inputs=prior_callback_on_step_end_tensor_inputs, | |
| **prior_kwargs, | |
| ) | |
| image_embeddings = prior_outputs[0] | |
| outputs = self.decoder_pipe( | |
| image_embeddings=image_embeddings, | |
| prompt=prompt if prompt is not None else "", | |
| num_inference_steps=num_inference_steps, | |
| timesteps=decoder_timesteps, | |
| guidance_scale=decoder_guidance_scale, | |
| negative_prompt=negative_prompt, | |
| generator=generator, | |
| output_type=output_type, | |
| return_dict=return_dict, | |
| callback_on_step_end=callback_on_step_end, | |
| callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs, | |
| **kwargs, | |
| ) | |
| return outputs | |