Spaces:
Running
on
Zero
Running
on
Zero
| from typing import Callable, Dict, List, Optional, Union | |
| import PIL.Image | |
| import torch | |
| from transformers import CLIPImageProcessor, CLIPTextModelWithProjection, CLIPTokenizer, CLIPVisionModelWithProjection | |
| from ...models import PriorTransformer | |
| from ...schedulers import UnCLIPScheduler | |
| from ...utils import ( | |
| logging, | |
| replace_example_docstring, | |
| ) | |
| from ...utils.torch_utils import randn_tensor | |
| from ..kandinsky import KandinskyPriorPipelineOutput | |
| from ..pipeline_utils import DiffusionPipeline | |
| logger = logging.get_logger(__name__) # pylint: disable=invalid-name | |
| EXAMPLE_DOC_STRING = """ | |
| Examples: | |
| ```py | |
| >>> from diffusers import KandinskyV22Pipeline, KandinskyV22PriorPipeline | |
| >>> import torch | |
| >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained("kandinsky-community/kandinsky-2-2-prior") | |
| >>> pipe_prior.to("cuda") | |
| >>> prompt = "red cat, 4k photo" | |
| >>> image_emb, negative_image_emb = pipe_prior(prompt).to_tuple() | |
| >>> pipe = KandinskyV22Pipeline.from_pretrained("kandinsky-community/kandinsky-2-2-decoder") | |
| >>> pipe.to("cuda") | |
| >>> image = pipe( | |
| ... image_embeds=image_emb, | |
| ... negative_image_embeds=negative_image_emb, | |
| ... height=768, | |
| ... width=768, | |
| ... num_inference_steps=50, | |
| ... ).images | |
| >>> image[0].save("cat.png") | |
| ``` | |
| """ | |
| EXAMPLE_INTERPOLATE_DOC_STRING = """ | |
| Examples: | |
| ```py | |
| >>> from diffusers import KandinskyV22PriorPipeline, KandinskyV22Pipeline | |
| >>> from diffusers.utils import load_image | |
| >>> import PIL | |
| >>> import torch | |
| >>> from torchvision import transforms | |
| >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained( | |
| ... "kandinsky-community/kandinsky-2-2-prior", torch_dtype=torch.float16 | |
| ... ) | |
| >>> pipe_prior.to("cuda") | |
| >>> img1 = load_image( | |
| ... "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" | |
| ... "/kandinsky/cat.png" | |
| ... ) | |
| >>> img2 = load_image( | |
| ... "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" | |
| ... "/kandinsky/starry_night.jpeg" | |
| ... ) | |
| >>> images_texts = ["a cat", img1, img2] | |
| >>> weights = [0.3, 0.3, 0.4] | |
| >>> out = pipe_prior.interpolate(images_texts, weights) | |
| >>> pipe = KandinskyV22Pipeline.from_pretrained( | |
| ... "kandinsky-community/kandinsky-2-2-decoder", torch_dtype=torch.float16 | |
| ... ) | |
| >>> pipe.to("cuda") | |
| >>> image = pipe( | |
| ... image_embeds=out.image_embeds, | |
| ... negative_image_embeds=out.negative_image_embeds, | |
| ... height=768, | |
| ... width=768, | |
| ... num_inference_steps=50, | |
| ... ).images[0] | |
| >>> image.save("starry_cat.png") | |
| ``` | |
| """ | |
| class KandinskyV22PriorPipeline(DiffusionPipeline): | |
| """ | |
| Pipeline for generating image prior for Kandinsky | |
| This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the | |
| library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.) | |
| Args: | |
| prior ([`PriorTransformer`]): | |
| The canonincal unCLIP prior to approximate the image embedding from the text embedding. | |
| image_encoder ([`CLIPVisionModelWithProjection`]): | |
| Frozen image-encoder. | |
| text_encoder ([`CLIPTextModelWithProjection`]): | |
| Frozen text-encoder. | |
| tokenizer (`CLIPTokenizer`): | |
| Tokenizer of class | |
| [CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer). | |
| scheduler ([`UnCLIPScheduler`]): | |
| A scheduler to be used in combination with `prior` to generate image embedding. | |
| image_processor ([`CLIPImageProcessor`]): | |
| A image_processor to be used to preprocess image from clip. | |
| """ | |
| model_cpu_offload_seq = "text_encoder->image_encoder->prior" | |
| _exclude_from_cpu_offload = ["prior"] | |
| _callback_tensor_inputs = ["latents", "prompt_embeds", "text_encoder_hidden_states", "text_mask"] | |
| def __init__( | |
| self, | |
| prior: PriorTransformer, | |
| image_encoder: CLIPVisionModelWithProjection, | |
| text_encoder: CLIPTextModelWithProjection, | |
| tokenizer: CLIPTokenizer, | |
| scheduler: UnCLIPScheduler, | |
| image_processor: CLIPImageProcessor, | |
| ): | |
| super().__init__() | |
| self.register_modules( | |
| prior=prior, | |
| text_encoder=text_encoder, | |
| tokenizer=tokenizer, | |
| scheduler=scheduler, | |
| image_encoder=image_encoder, | |
| image_processor=image_processor, | |
| ) | |
| def interpolate( | |
| self, | |
| images_and_prompts: List[Union[str, PIL.Image.Image, torch.FloatTensor]], | |
| weights: List[float], | |
| num_images_per_prompt: int = 1, | |
| num_inference_steps: int = 25, | |
| generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | |
| latents: Optional[torch.FloatTensor] = None, | |
| negative_prior_prompt: Optional[str] = None, | |
| negative_prompt: str = "", | |
| guidance_scale: float = 4.0, | |
| device=None, | |
| ): | |
| """ | |
| Function invoked when using the prior pipeline for interpolation. | |
| Args: | |
| images_and_prompts (`List[Union[str, PIL.Image.Image, torch.FloatTensor]]`): | |
| list of prompts and images to guide the image generation. | |
| weights: (`List[float]`): | |
| list of weights for each condition in `images_and_prompts` | |
| num_images_per_prompt (`int`, *optional*, defaults to 1): | |
| The number of images to generate per prompt. | |
| num_inference_steps (`int`, *optional*, defaults to 100): | |
| The number of denoising steps. More denoising steps usually lead to a higher quality image at the | |
| expense of slower inference. | |
| generator (`torch.Generator` or `List[torch.Generator]`, *optional*): | |
| One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) | |
| to make generation deterministic. | |
| latents (`torch.FloatTensor`, *optional*): | |
| Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image | |
| generation. Can be used to tweak the same generation with different prompts. If not provided, a latents | |
| tensor will ge generated by sampling using the supplied random `generator`. | |
| negative_prior_prompt (`str`, *optional*): | |
| The prompt not to guide the prior diffusion process. Ignored when not using guidance (i.e., ignored if | |
| `guidance_scale` is less than `1`). | |
| negative_prompt (`str` or `List[str]`, *optional*): | |
| The prompt not to guide the image generation. Ignored when not using guidance (i.e., ignored if | |
| `guidance_scale` is less than `1`). | |
| guidance_scale (`float`, *optional*, defaults to 4.0): | |
| Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). | |
| `guidance_scale` is defined as `w` of equation 2. of [Imagen | |
| Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > | |
| 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, | |
| usually at the expense of lower image quality. | |
| Examples: | |
| Returns: | |
| [`KandinskyPriorPipelineOutput`] or `tuple` | |
| """ | |
| device = device or self.device | |
| if len(images_and_prompts) != len(weights): | |
| raise ValueError( | |
| f"`images_and_prompts` contains {len(images_and_prompts)} items and `weights` contains {len(weights)} items - they should be lists of same length" | |
| ) | |
| image_embeddings = [] | |
| for cond, weight in zip(images_and_prompts, weights): | |
| if isinstance(cond, str): | |
| image_emb = self( | |
| cond, | |
| num_inference_steps=num_inference_steps, | |
| num_images_per_prompt=num_images_per_prompt, | |
| generator=generator, | |
| latents=latents, | |
| negative_prompt=negative_prior_prompt, | |
| guidance_scale=guidance_scale, | |
| ).image_embeds.unsqueeze(0) | |
| elif isinstance(cond, (PIL.Image.Image, torch.Tensor)): | |
| if isinstance(cond, PIL.Image.Image): | |
| cond = ( | |
| self.image_processor(cond, return_tensors="pt") | |
| .pixel_values[0] | |
| .unsqueeze(0) | |
| .to(dtype=self.image_encoder.dtype, device=device) | |
| ) | |
| image_emb = self.image_encoder(cond)["image_embeds"].repeat(num_images_per_prompt, 1).unsqueeze(0) | |
| else: | |
| raise ValueError( | |
| f"`images_and_prompts` can only contains elements to be of type `str`, `PIL.Image.Image` or `torch.Tensor` but is {type(cond)}" | |
| ) | |
| image_embeddings.append(image_emb * weight) | |
| image_emb = torch.cat(image_embeddings).sum(dim=0) | |
| out_zero = self( | |
| negative_prompt, | |
| num_inference_steps=num_inference_steps, | |
| num_images_per_prompt=num_images_per_prompt, | |
| generator=generator, | |
| latents=latents, | |
| negative_prompt=negative_prior_prompt, | |
| guidance_scale=guidance_scale, | |
| ) | |
| zero_image_emb = out_zero.negative_image_embeds if negative_prompt == "" else out_zero.image_embeds | |
| return KandinskyPriorPipelineOutput(image_embeds=image_emb, negative_image_embeds=zero_image_emb) | |
| # Copied from diffusers.pipelines.unclip.pipeline_unclip.UnCLIPPipeline.prepare_latents | |
| def prepare_latents(self, shape, dtype, device, generator, latents, scheduler): | |
| if latents is None: | |
| latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) | |
| else: | |
| if latents.shape != shape: | |
| raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {shape}") | |
| latents = latents.to(device) | |
| latents = latents * scheduler.init_noise_sigma | |
| return latents | |
| # Copied from diffusers.pipelines.kandinsky.pipeline_kandinsky_prior.KandinskyPriorPipeline.get_zero_embed | |
| def get_zero_embed(self, batch_size=1, device=None): | |
| device = device or self.device | |
| zero_img = torch.zeros(1, 3, self.image_encoder.config.image_size, self.image_encoder.config.image_size).to( | |
| device=device, dtype=self.image_encoder.dtype | |
| ) | |
| zero_image_emb = self.image_encoder(zero_img)["image_embeds"] | |
| zero_image_emb = zero_image_emb.repeat(batch_size, 1) | |
| return zero_image_emb | |
| # Copied from diffusers.pipelines.kandinsky.pipeline_kandinsky_prior.KandinskyPriorPipeline._encode_prompt | |
| def _encode_prompt( | |
| self, | |
| prompt, | |
| device, | |
| num_images_per_prompt, | |
| do_classifier_free_guidance, | |
| negative_prompt=None, | |
| ): | |
| batch_size = len(prompt) if isinstance(prompt, list) else 1 | |
| # get prompt text embeddings | |
| text_inputs = self.tokenizer( | |
| prompt, | |
| padding="max_length", | |
| max_length=self.tokenizer.model_max_length, | |
| truncation=True, | |
| return_tensors="pt", | |
| ) | |
| text_input_ids = text_inputs.input_ids | |
| text_mask = text_inputs.attention_mask.bool().to(device) | |
| untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids | |
| if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids): | |
| removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1]) | |
| logger.warning( | |
| "The following part of your input was truncated because CLIP can only handle sequences up to" | |
| f" {self.tokenizer.model_max_length} tokens: {removed_text}" | |
| ) | |
| text_input_ids = text_input_ids[:, : self.tokenizer.model_max_length] | |
| text_encoder_output = self.text_encoder(text_input_ids.to(device)) | |
| prompt_embeds = text_encoder_output.text_embeds | |
| text_encoder_hidden_states = text_encoder_output.last_hidden_state | |
| prompt_embeds = prompt_embeds.repeat_interleave(num_images_per_prompt, dim=0) | |
| text_encoder_hidden_states = text_encoder_hidden_states.repeat_interleave(num_images_per_prompt, dim=0) | |
| text_mask = text_mask.repeat_interleave(num_images_per_prompt, dim=0) | |
| if do_classifier_free_guidance: | |
| uncond_tokens: List[str] | |
| if negative_prompt is None: | |
| uncond_tokens = [""] * batch_size | |
| elif type(prompt) is not type(negative_prompt): | |
| raise TypeError( | |
| f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" | |
| f" {type(prompt)}." | |
| ) | |
| elif isinstance(negative_prompt, str): | |
| uncond_tokens = [negative_prompt] | |
| elif batch_size != len(negative_prompt): | |
| raise ValueError( | |
| f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" | |
| f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" | |
| " the batch size of `prompt`." | |
| ) | |
| else: | |
| uncond_tokens = negative_prompt | |
| uncond_input = self.tokenizer( | |
| uncond_tokens, | |
| padding="max_length", | |
| max_length=self.tokenizer.model_max_length, | |
| truncation=True, | |
| return_tensors="pt", | |
| ) | |
| uncond_text_mask = uncond_input.attention_mask.bool().to(device) | |
| negative_prompt_embeds_text_encoder_output = self.text_encoder(uncond_input.input_ids.to(device)) | |
| negative_prompt_embeds = negative_prompt_embeds_text_encoder_output.text_embeds | |
| uncond_text_encoder_hidden_states = negative_prompt_embeds_text_encoder_output.last_hidden_state | |
| # duplicate unconditional embeddings for each generation per prompt, using mps friendly method | |
| seq_len = negative_prompt_embeds.shape[1] | |
| negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt) | |
| negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len) | |
| seq_len = uncond_text_encoder_hidden_states.shape[1] | |
| uncond_text_encoder_hidden_states = uncond_text_encoder_hidden_states.repeat(1, num_images_per_prompt, 1) | |
| uncond_text_encoder_hidden_states = uncond_text_encoder_hidden_states.view( | |
| batch_size * num_images_per_prompt, seq_len, -1 | |
| ) | |
| uncond_text_mask = uncond_text_mask.repeat_interleave(num_images_per_prompt, dim=0) | |
| # done duplicates | |
| # For classifier free guidance, we need to do two forward passes. | |
| # Here we concatenate the unconditional and text embeddings into a single batch | |
| # to avoid doing two forward passes | |
| prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) | |
| text_encoder_hidden_states = torch.cat([uncond_text_encoder_hidden_states, text_encoder_hidden_states]) | |
| text_mask = torch.cat([uncond_text_mask, text_mask]) | |
| return prompt_embeds, text_encoder_hidden_states, text_mask | |
| def do_classifier_free_guidance(self): | |
| return self._guidance_scale > 1 | |
| def guidance_scale(self): | |
| return self._guidance_scale | |
| def num_timesteps(self): | |
| return self._num_timesteps | |
| def __call__( | |
| self, | |
| prompt: Union[str, List[str]], | |
| negative_prompt: Optional[Union[str, List[str]]] = None, | |
| num_images_per_prompt: int = 1, | |
| num_inference_steps: int = 25, | |
| generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | |
| latents: Optional[torch.FloatTensor] = None, | |
| guidance_scale: float = 4.0, | |
| output_type: Optional[str] = "pt", # pt only | |
| return_dict: bool = True, | |
| callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None, | |
| callback_on_step_end_tensor_inputs: List[str] = ["latents"], | |
| ): | |
| """ | |
| Function invoked when calling the pipeline for generation. | |
| Args: | |
| prompt (`str` or `List[str]`): | |
| The prompt or prompts to guide the image generation. | |
| negative_prompt (`str` or `List[str]`, *optional*): | |
| The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored | |
| if `guidance_scale` is less than `1`). | |
| num_images_per_prompt (`int`, *optional*, defaults to 1): | |
| The number of images to generate per prompt. | |
| num_inference_steps (`int`, *optional*, defaults to 100): | |
| The number of denoising steps. More denoising steps usually lead to a higher quality image at the | |
| expense of slower inference. | |
| generator (`torch.Generator` or `List[torch.Generator]`, *optional*): | |
| One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) | |
| to make generation deterministic. | |
| latents (`torch.FloatTensor`, *optional*): | |
| Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image | |
| generation. Can be used to tweak the same generation with different prompts. If not provided, a latents | |
| tensor will ge generated by sampling using the supplied random `generator`. | |
| guidance_scale (`float`, *optional*, defaults to 4.0): | |
| Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). | |
| `guidance_scale` is defined as `w` of equation 2. of [Imagen | |
| Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > | |
| 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, | |
| usually at the expense of lower image quality. | |
| output_type (`str`, *optional*, defaults to `"pt"`): | |
| The output format of the generate image. Choose between: `"np"` (`np.array`) or `"pt"` | |
| (`torch.Tensor`). | |
| return_dict (`bool`, *optional*, defaults to `True`): | |
| Whether or not to return a [`~pipelines.ImagePipelineOutput`] instead of a plain tuple. | |
| callback_on_step_end (`Callable`, *optional*): | |
| A function that calls at the end of each denoising steps during the inference. The function is called | |
| with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int, | |
| callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by | |
| `callback_on_step_end_tensor_inputs`. | |
| callback_on_step_end_tensor_inputs (`List`, *optional*): | |
| The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list | |
| will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the | |
| `._callback_tensor_inputs` attribute of your pipeline class. | |
| Examples: | |
| Returns: | |
| [`KandinskyPriorPipelineOutput`] or `tuple` | |
| """ | |
| if callback_on_step_end_tensor_inputs is not None and not all( | |
| k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs | |
| ): | |
| raise ValueError( | |
| f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}" | |
| ) | |
| if isinstance(prompt, str): | |
| prompt = [prompt] | |
| elif not isinstance(prompt, list): | |
| raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") | |
| if isinstance(negative_prompt, str): | |
| negative_prompt = [negative_prompt] | |
| elif not isinstance(negative_prompt, list) and negative_prompt is not None: | |
| raise ValueError(f"`negative_prompt` has to be of type `str` or `list` but is {type(negative_prompt)}") | |
| # if the negative prompt is defined we double the batch size to | |
| # directly retrieve the negative prompt embedding | |
| if negative_prompt is not None: | |
| prompt = prompt + negative_prompt | |
| negative_prompt = 2 * negative_prompt | |
| device = self._execution_device | |
| batch_size = len(prompt) | |
| batch_size = batch_size * num_images_per_prompt | |
| self._guidance_scale = guidance_scale | |
| prompt_embeds, text_encoder_hidden_states, text_mask = self._encode_prompt( | |
| prompt, device, num_images_per_prompt, self.do_classifier_free_guidance, negative_prompt | |
| ) | |
| # prior | |
| self.scheduler.set_timesteps(num_inference_steps, device=device) | |
| timesteps = self.scheduler.timesteps | |
| embedding_dim = self.prior.config.embedding_dim | |
| latents = self.prepare_latents( | |
| (batch_size, embedding_dim), | |
| prompt_embeds.dtype, | |
| device, | |
| generator, | |
| latents, | |
| self.scheduler, | |
| ) | |
| self._num_timesteps = len(timesteps) | |
| for i, t in enumerate(self.progress_bar(timesteps)): | |
| # expand the latents if we are doing classifier free guidance | |
| latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents | |
| predicted_image_embedding = self.prior( | |
| latent_model_input, | |
| timestep=t, | |
| proj_embedding=prompt_embeds, | |
| encoder_hidden_states=text_encoder_hidden_states, | |
| attention_mask=text_mask, | |
| ).predicted_image_embedding | |
| if self.do_classifier_free_guidance: | |
| predicted_image_embedding_uncond, predicted_image_embedding_text = predicted_image_embedding.chunk(2) | |
| predicted_image_embedding = predicted_image_embedding_uncond + self.guidance_scale * ( | |
| predicted_image_embedding_text - predicted_image_embedding_uncond | |
| ) | |
| if i + 1 == timesteps.shape[0]: | |
| prev_timestep = None | |
| else: | |
| prev_timestep = timesteps[i + 1] | |
| latents = self.scheduler.step( | |
| predicted_image_embedding, | |
| timestep=t, | |
| sample=latents, | |
| generator=generator, | |
| prev_timestep=prev_timestep, | |
| ).prev_sample | |
| if callback_on_step_end is not None: | |
| callback_kwargs = {} | |
| for k in callback_on_step_end_tensor_inputs: | |
| callback_kwargs[k] = locals()[k] | |
| callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) | |
| latents = callback_outputs.pop("latents", latents) | |
| prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds) | |
| text_encoder_hidden_states = callback_outputs.pop( | |
| "text_encoder_hidden_states", text_encoder_hidden_states | |
| ) | |
| text_mask = callback_outputs.pop("text_mask", text_mask) | |
| latents = self.prior.post_process_latents(latents) | |
| image_embeddings = latents | |
| # if negative prompt has been defined, we retrieve split the image embedding into two | |
| if negative_prompt is None: | |
| zero_embeds = self.get_zero_embed(latents.shape[0], device=latents.device) | |
| else: | |
| image_embeddings, zero_embeds = image_embeddings.chunk(2) | |
| self.maybe_free_model_hooks() | |
| if output_type not in ["pt", "np"]: | |
| raise ValueError(f"Only the output types `pt` and `np` are supported not output_type={output_type}") | |
| if output_type == "np": | |
| image_embeddings = image_embeddings.cpu().numpy() | |
| zero_embeds = zero_embeds.cpu().numpy() | |
| if not return_dict: | |
| return (image_embeddings, zero_embeds) | |
| return KandinskyPriorPipelineOutput(image_embeds=image_embeddings, negative_image_embeds=zero_embeds) | |