Spaces:
Running
on
Zero
Running
on
Zero
| # Copyright 2023 The HuggingFace Team. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| from typing import Callable, Dict, List, Optional, Union | |
| import torch | |
| from ...models import UNet2DConditionModel, VQModel | |
| from ...schedulers import DDPMScheduler | |
| from ...utils import deprecate, logging, replace_example_docstring | |
| from ...utils.torch_utils import randn_tensor | |
| from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput | |
| logger = logging.get_logger(__name__) # pylint: disable=invalid-name | |
| EXAMPLE_DOC_STRING = """ | |
| Examples: | |
| ```py | |
| >>> from diffusers import KandinskyV22Pipeline, KandinskyV22PriorPipeline | |
| >>> import torch | |
| >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained("kandinsky-community/kandinsky-2-2-prior") | |
| >>> pipe_prior.to("cuda") | |
| >>> prompt = "red cat, 4k photo" | |
| >>> out = pipe_prior(prompt) | |
| >>> image_emb = out.image_embeds | |
| >>> zero_image_emb = out.negative_image_embeds | |
| >>> pipe = KandinskyV22Pipeline.from_pretrained("kandinsky-community/kandinsky-2-2-decoder") | |
| >>> pipe.to("cuda") | |
| >>> image = pipe( | |
| ... image_embeds=image_emb, | |
| ... negative_image_embeds=zero_image_emb, | |
| ... height=768, | |
| ... width=768, | |
| ... num_inference_steps=50, | |
| ... ).images | |
| >>> image[0].save("cat.png") | |
| ``` | |
| """ | |
| def downscale_height_and_width(height, width, scale_factor=8): | |
| new_height = height // scale_factor**2 | |
| if height % scale_factor**2 != 0: | |
| new_height += 1 | |
| new_width = width // scale_factor**2 | |
| if width % scale_factor**2 != 0: | |
| new_width += 1 | |
| return new_height * scale_factor, new_width * scale_factor | |
| class KandinskyV22Pipeline(DiffusionPipeline): | |
| """ | |
| Pipeline for text-to-image generation using Kandinsky | |
| This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the | |
| library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.) | |
| Args: | |
| scheduler (Union[`DDIMScheduler`,`DDPMScheduler`]): | |
| A scheduler to be used in combination with `unet` to generate image latents. | |
| unet ([`UNet2DConditionModel`]): | |
| Conditional U-Net architecture to denoise the image embedding. | |
| movq ([`VQModel`]): | |
| MoVQ Decoder to generate the image from the latents. | |
| """ | |
| model_cpu_offload_seq = "unet->movq" | |
| _callback_tensor_inputs = ["latents", "image_embeds", "negative_image_embeds"] | |
| def __init__( | |
| self, | |
| unet: UNet2DConditionModel, | |
| scheduler: DDPMScheduler, | |
| movq: VQModel, | |
| ): | |
| super().__init__() | |
| self.register_modules( | |
| unet=unet, | |
| scheduler=scheduler, | |
| movq=movq, | |
| ) | |
| self.movq_scale_factor = 2 ** (len(self.movq.config.block_out_channels) - 1) | |
| # Copied from diffusers.pipelines.unclip.pipeline_unclip.UnCLIPPipeline.prepare_latents | |
| def prepare_latents(self, shape, dtype, device, generator, latents, scheduler): | |
| if latents is None: | |
| latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) | |
| else: | |
| if latents.shape != shape: | |
| raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {shape}") | |
| latents = latents.to(device) | |
| latents = latents * scheduler.init_noise_sigma | |
| return latents | |
| def guidance_scale(self): | |
| return self._guidance_scale | |
| def do_classifier_free_guidance(self): | |
| return self._guidance_scale > 1 | |
| def num_timesteps(self): | |
| return self._num_timesteps | |
| def __call__( | |
| self, | |
| image_embeds: Union[torch.FloatTensor, List[torch.FloatTensor]], | |
| negative_image_embeds: Union[torch.FloatTensor, List[torch.FloatTensor]], | |
| height: int = 512, | |
| width: int = 512, | |
| num_inference_steps: int = 100, | |
| guidance_scale: float = 4.0, | |
| num_images_per_prompt: int = 1, | |
| generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | |
| latents: Optional[torch.FloatTensor] = None, | |
| output_type: Optional[str] = "pil", | |
| return_dict: bool = True, | |
| callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None, | |
| callback_on_step_end_tensor_inputs: List[str] = ["latents"], | |
| **kwargs, | |
| ): | |
| """ | |
| Function invoked when calling the pipeline for generation. | |
| Args: | |
| image_embeds (`torch.FloatTensor` or `List[torch.FloatTensor]`): | |
| The clip image embeddings for text prompt, that will be used to condition the image generation. | |
| negative_image_embeds (`torch.FloatTensor` or `List[torch.FloatTensor]`): | |
| The clip image embeddings for negative text prompt, will be used to condition the image generation. | |
| height (`int`, *optional*, defaults to 512): | |
| The height in pixels of the generated image. | |
| width (`int`, *optional*, defaults to 512): | |
| The width in pixels of the generated image. | |
| num_inference_steps (`int`, *optional*, defaults to 100): | |
| The number of denoising steps. More denoising steps usually lead to a higher quality image at the | |
| expense of slower inference. | |
| guidance_scale (`float`, *optional*, defaults to 4.0): | |
| Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). | |
| `guidance_scale` is defined as `w` of equation 2. of [Imagen | |
| Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > | |
| 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, | |
| usually at the expense of lower image quality. | |
| num_images_per_prompt (`int`, *optional*, defaults to 1): | |
| The number of images to generate per prompt. | |
| generator (`torch.Generator` or `List[torch.Generator]`, *optional*): | |
| One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) | |
| to make generation deterministic. | |
| latents (`torch.FloatTensor`, *optional*): | |
| Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image | |
| generation. Can be used to tweak the same generation with different prompts. If not provided, a latents | |
| tensor will ge generated by sampling using the supplied random `generator`. | |
| output_type (`str`, *optional*, defaults to `"pil"`): | |
| The output format of the generate image. Choose between: `"pil"` (`PIL.Image.Image`), `"np"` | |
| (`np.array`) or `"pt"` (`torch.Tensor`). | |
| return_dict (`bool`, *optional*, defaults to `True`): | |
| Whether or not to return a [`~pipelines.ImagePipelineOutput`] instead of a plain tuple. | |
| callback_on_step_end (`Callable`, *optional*): | |
| A function that calls at the end of each denoising steps during the inference. The function is called | |
| with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int, | |
| callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by | |
| `callback_on_step_end_tensor_inputs`. | |
| callback_on_step_end_tensor_inputs (`List`, *optional*): | |
| The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list | |
| will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the | |
| `._callback_tensor_inputs` attribute of your pipeline class. | |
| Examples: | |
| Returns: | |
| [`~pipelines.ImagePipelineOutput`] or `tuple` | |
| """ | |
| callback = kwargs.pop("callback", None) | |
| callback_steps = kwargs.pop("callback_steps", None) | |
| if callback is not None: | |
| deprecate( | |
| "callback", | |
| "1.0.0", | |
| "Passing `callback` as an input argument to `__call__` is deprecated, consider use `callback_on_step_end`", | |
| ) | |
| if callback_steps is not None: | |
| deprecate( | |
| "callback_steps", | |
| "1.0.0", | |
| "Passing `callback_steps` as an input argument to `__call__` is deprecated, consider use `callback_on_step_end`", | |
| ) | |
| if callback_on_step_end_tensor_inputs is not None and not all( | |
| k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs | |
| ): | |
| raise ValueError( | |
| f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}" | |
| ) | |
| device = self._execution_device | |
| self._guidance_scale = guidance_scale | |
| if isinstance(image_embeds, list): | |
| image_embeds = torch.cat(image_embeds, dim=0) | |
| batch_size = image_embeds.shape[0] * num_images_per_prompt | |
| if isinstance(negative_image_embeds, list): | |
| negative_image_embeds = torch.cat(negative_image_embeds, dim=0) | |
| if self.do_classifier_free_guidance: | |
| image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0) | |
| negative_image_embeds = negative_image_embeds.repeat_interleave(num_images_per_prompt, dim=0) | |
| image_embeds = torch.cat([negative_image_embeds, image_embeds], dim=0).to( | |
| dtype=self.unet.dtype, device=device | |
| ) | |
| self.scheduler.set_timesteps(num_inference_steps, device=device) | |
| timesteps = self.scheduler.timesteps | |
| num_channels_latents = self.unet.config.in_channels | |
| height, width = downscale_height_and_width(height, width, self.movq_scale_factor) | |
| # create initial latent | |
| latents = self.prepare_latents( | |
| (batch_size, num_channels_latents, height, width), | |
| image_embeds.dtype, | |
| device, | |
| generator, | |
| latents, | |
| self.scheduler, | |
| ) | |
| self._num_timesteps = len(timesteps) | |
| for i, t in enumerate(self.progress_bar(timesteps)): | |
| # expand the latents if we are doing classifier free guidance | |
| latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents | |
| added_cond_kwargs = {"image_embeds": image_embeds} | |
| noise_pred = self.unet( | |
| sample=latent_model_input, | |
| timestep=t, | |
| encoder_hidden_states=None, | |
| added_cond_kwargs=added_cond_kwargs, | |
| return_dict=False, | |
| )[0] | |
| if self.do_classifier_free_guidance: | |
| noise_pred, variance_pred = noise_pred.split(latents.shape[1], dim=1) | |
| noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) | |
| _, variance_pred_text = variance_pred.chunk(2) | |
| noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond) | |
| noise_pred = torch.cat([noise_pred, variance_pred_text], dim=1) | |
| if not ( | |
| hasattr(self.scheduler.config, "variance_type") | |
| and self.scheduler.config.variance_type in ["learned", "learned_range"] | |
| ): | |
| noise_pred, _ = noise_pred.split(latents.shape[1], dim=1) | |
| # compute the previous noisy sample x_t -> x_t-1 | |
| latents = self.scheduler.step( | |
| noise_pred, | |
| t, | |
| latents, | |
| generator=generator, | |
| )[0] | |
| if callback_on_step_end is not None: | |
| callback_kwargs = {} | |
| for k in callback_on_step_end_tensor_inputs: | |
| callback_kwargs[k] = locals()[k] | |
| callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) | |
| latents = callback_outputs.pop("latents", latents) | |
| image_embeds = callback_outputs.pop("image_embeds", image_embeds) | |
| negative_image_embeds = callback_outputs.pop("negative_image_embeds", negative_image_embeds) | |
| if callback is not None and i % callback_steps == 0: | |
| step_idx = i // getattr(self.scheduler, "order", 1) | |
| callback(step_idx, t, latents) | |
| if output_type not in ["pt", "np", "pil", "latent"]: | |
| raise ValueError(f"Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}") | |
| if not output_type == "latent": | |
| # post-processing | |
| image = self.movq.decode(latents, force_not_quantize=True)["sample"] | |
| if output_type in ["np", "pil"]: | |
| image = image * 0.5 + 0.5 | |
| image = image.clamp(0, 1) | |
| image = image.cpu().permute(0, 2, 3, 1).float().numpy() | |
| if output_type == "pil": | |
| image = self.numpy_to_pil(image) | |
| else: | |
| image = latents | |
| self.maybe_free_model_hooks() | |
| if not return_dict: | |
| return (image,) | |
| return ImagePipelineOutput(images=image) | |