Spaces:
Running
on
Zero
Running
on
Zero
| # Copyright 2022 The Music Spectrogram Diffusion Authors. | |
| # Copyright 2023 The HuggingFace Team. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| import torch | |
| import torch.nn as nn | |
| from transformers.modeling_utils import ModuleUtilsMixin | |
| from transformers.models.t5.modeling_t5 import T5Block, T5Config, T5LayerNorm | |
| from ....configuration_utils import ConfigMixin, register_to_config | |
| from ....models import ModelMixin | |
| class SpectrogramNotesEncoder(ModelMixin, ConfigMixin, ModuleUtilsMixin): | |
| def __init__( | |
| self, | |
| max_length: int, | |
| vocab_size: int, | |
| d_model: int, | |
| dropout_rate: float, | |
| num_layers: int, | |
| num_heads: int, | |
| d_kv: int, | |
| d_ff: int, | |
| feed_forward_proj: str, | |
| is_decoder: bool = False, | |
| ): | |
| super().__init__() | |
| self.token_embedder = nn.Embedding(vocab_size, d_model) | |
| self.position_encoding = nn.Embedding(max_length, d_model) | |
| self.position_encoding.weight.requires_grad = False | |
| self.dropout_pre = nn.Dropout(p=dropout_rate) | |
| t5config = T5Config( | |
| vocab_size=vocab_size, | |
| d_model=d_model, | |
| num_heads=num_heads, | |
| d_kv=d_kv, | |
| d_ff=d_ff, | |
| dropout_rate=dropout_rate, | |
| feed_forward_proj=feed_forward_proj, | |
| is_decoder=is_decoder, | |
| is_encoder_decoder=False, | |
| ) | |
| self.encoders = nn.ModuleList() | |
| for lyr_num in range(num_layers): | |
| lyr = T5Block(t5config) | |
| self.encoders.append(lyr) | |
| self.layer_norm = T5LayerNorm(d_model) | |
| self.dropout_post = nn.Dropout(p=dropout_rate) | |
| def forward(self, encoder_input_tokens, encoder_inputs_mask): | |
| x = self.token_embedder(encoder_input_tokens) | |
| seq_length = encoder_input_tokens.shape[1] | |
| inputs_positions = torch.arange(seq_length, device=encoder_input_tokens.device) | |
| x += self.position_encoding(inputs_positions) | |
| x = self.dropout_pre(x) | |
| # inverted the attention mask | |
| input_shape = encoder_input_tokens.size() | |
| extended_attention_mask = self.get_extended_attention_mask(encoder_inputs_mask, input_shape) | |
| for lyr in self.encoders: | |
| x = lyr(x, extended_attention_mask)[0] | |
| x = self.layer_norm(x) | |
| return self.dropout_post(x), encoder_inputs_mask | |