Spaces:
Running
on
Zero
Running
on
Zero
| # Copyright 2023 The HuggingFace Team. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| from typing import List, Optional, Tuple, Union | |
| import torch | |
| from ...utils import logging | |
| from ...utils.torch_utils import randn_tensor | |
| from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline | |
| logger = logging.get_logger(__name__) # pylint: disable=invalid-name | |
| class DanceDiffusionPipeline(DiffusionPipeline): | |
| r""" | |
| Pipeline for audio generation. | |
| This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods | |
| implemented for all pipelines (downloading, saving, running on a particular device, etc.). | |
| Parameters: | |
| unet ([`UNet1DModel`]): | |
| A `UNet1DModel` to denoise the encoded audio. | |
| scheduler ([`SchedulerMixin`]): | |
| A scheduler to be used in combination with `unet` to denoise the encoded audio latents. Can be one of | |
| [`IPNDMScheduler`]. | |
| """ | |
| model_cpu_offload_seq = "unet" | |
| def __init__(self, unet, scheduler): | |
| super().__init__() | |
| self.register_modules(unet=unet, scheduler=scheduler) | |
| def __call__( | |
| self, | |
| batch_size: int = 1, | |
| num_inference_steps: int = 100, | |
| generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | |
| audio_length_in_s: Optional[float] = None, | |
| return_dict: bool = True, | |
| ) -> Union[AudioPipelineOutput, Tuple]: | |
| r""" | |
| The call function to the pipeline for generation. | |
| Args: | |
| batch_size (`int`, *optional*, defaults to 1): | |
| The number of audio samples to generate. | |
| num_inference_steps (`int`, *optional*, defaults to 50): | |
| The number of denoising steps. More denoising steps usually lead to a higher-quality audio sample at | |
| the expense of slower inference. | |
| generator (`torch.Generator`, *optional*): | |
| A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make | |
| generation deterministic. | |
| audio_length_in_s (`float`, *optional*, defaults to `self.unet.config.sample_size/self.unet.config.sample_rate`): | |
| The length of the generated audio sample in seconds. | |
| return_dict (`bool`, *optional*, defaults to `True`): | |
| Whether or not to return a [`~pipelines.AudioPipelineOutput`] instead of a plain tuple. | |
| Example: | |
| ```py | |
| from diffusers import DiffusionPipeline | |
| from scipy.io.wavfile import write | |
| model_id = "harmonai/maestro-150k" | |
| pipe = DiffusionPipeline.from_pretrained(model_id) | |
| pipe = pipe.to("cuda") | |
| audios = pipe(audio_length_in_s=4.0).audios | |
| # To save locally | |
| for i, audio in enumerate(audios): | |
| write(f"maestro_test_{i}.wav", pipe.unet.sample_rate, audio.transpose()) | |
| # To dislay in google colab | |
| import IPython.display as ipd | |
| for audio in audios: | |
| display(ipd.Audio(audio, rate=pipe.unet.sample_rate)) | |
| ``` | |
| Returns: | |
| [`~pipelines.AudioPipelineOutput`] or `tuple`: | |
| If `return_dict` is `True`, [`~pipelines.AudioPipelineOutput`] is returned, otherwise a `tuple` is | |
| returned where the first element is a list with the generated audio. | |
| """ | |
| if audio_length_in_s is None: | |
| audio_length_in_s = self.unet.config.sample_size / self.unet.config.sample_rate | |
| sample_size = audio_length_in_s * self.unet.config.sample_rate | |
| down_scale_factor = 2 ** len(self.unet.up_blocks) | |
| if sample_size < 3 * down_scale_factor: | |
| raise ValueError( | |
| f"{audio_length_in_s} is too small. Make sure it's bigger or equal to" | |
| f" {3 * down_scale_factor / self.unet.config.sample_rate}." | |
| ) | |
| original_sample_size = int(sample_size) | |
| if sample_size % down_scale_factor != 0: | |
| sample_size = ( | |
| (audio_length_in_s * self.unet.config.sample_rate) // down_scale_factor + 1 | |
| ) * down_scale_factor | |
| logger.info( | |
| f"{audio_length_in_s} is increased to {sample_size / self.unet.config.sample_rate} so that it can be handled" | |
| f" by the model. It will be cut to {original_sample_size / self.unet.config.sample_rate} after the denoising" | |
| " process." | |
| ) | |
| sample_size = int(sample_size) | |
| dtype = next(self.unet.parameters()).dtype | |
| shape = (batch_size, self.unet.config.in_channels, sample_size) | |
| if isinstance(generator, list) and len(generator) != batch_size: | |
| raise ValueError( | |
| f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" | |
| f" size of {batch_size}. Make sure the batch size matches the length of the generators." | |
| ) | |
| audio = randn_tensor(shape, generator=generator, device=self._execution_device, dtype=dtype) | |
| # set step values | |
| self.scheduler.set_timesteps(num_inference_steps, device=audio.device) | |
| self.scheduler.timesteps = self.scheduler.timesteps.to(dtype) | |
| for t in self.progress_bar(self.scheduler.timesteps): | |
| # 1. predict noise model_output | |
| model_output = self.unet(audio, t).sample | |
| # 2. compute previous audio sample: x_t -> t_t-1 | |
| audio = self.scheduler.step(model_output, t, audio).prev_sample | |
| audio = audio.clamp(-1, 1).float().cpu().numpy() | |
| audio = audio[:, :, :original_sample_size] | |
| if not return_dict: | |
| return (audio,) | |
| return AudioPipelineOutput(audios=audio) | |