Spaces:
				
			
			
	
			
			
					
		Running
		
	
	
	
			
			
	
	
	
	
		
		
					
		Running
		
	Update app.py
Browse files
    	
        app.py
    CHANGED
    
    | @@ -6,24 +6,57 @@ import requests | |
| 6 | 
             
            from io import StringIO
         | 
| 7 | 
             
            import base64
         | 
| 8 |  | 
| 9 | 
            -
            #@st.cache_data(ttl=86400)  # TTL is set for 86400 seconds (24 hours)
         | 
| 10 | 
             
            def load_data_predictions(github_token):
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 11 |  | 
| 12 | 
            -
                 | 
| 13 | 
            -
                 | 
|  | |
|  | |
|  | |
| 14 |  | 
| 15 | 
            -
                 | 
| 16 | 
            -
             | 
| 17 | 
            -
                 | 
| 18 | 
            -
                 | 
| 19 | 
            -
             | 
| 20 | 
            -
                     | 
| 21 | 
            -
                     | 
| 22 | 
            -
             | 
| 23 | 
            -
             | 
| 24 | 
            -
             | 
|  | |
|  | |
|  | |
| 25 |  | 
| 26 | 
            -
             | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 27 | 
             
                    'Price': 'Real Price',
         | 
| 28 | 
             
                    'DNN1': 'Neural Network 1',
         | 
| 29 | 
             
                    'DNN2': 'Neural Network 2',
         | 
| @@ -36,48 +69,23 @@ def load_data_predictions(github_token): | |
| 36 | 
             
                    'Persis': 'Persistence Model',
         | 
| 37 | 
             
                    'Hybrid_Ensemble': 'Hybrid Ensemble',
         | 
| 38 | 
             
                    'Weighted_Ensemble': 'Weighted Ensemble'
         | 
| 39 | 
            -
             | 
| 40 | 
            -
             | 
| 41 | 
            -
             | 
| 42 | 
            -
             | 
| 43 | 
            -
                 | 
| 44 | 
            -
             | 
| 45 | 
            -
             | 
| 46 |  | 
| 47 |  | 
| 48 | 
             
            github_token = st.secrets["GitHub_Token_Margarida"]
         | 
| 49 |  | 
| 50 | 
             
            if github_token:
         | 
| 51 | 
             
                df, df_filtered = load_data_predictions(github_token)
         | 
| 52 | 
            -
             | 
| 53 | 
             
            else:
         | 
| 54 | 
             
                st.warning("Please enter your GitHub Personal Access Token to proceed.")
         | 
| 55 |  | 
| 56 |  | 
| 57 | 
            -
            #@st.cache_data
         | 
| 58 | 
            -
            #def load_data_predictions():
         | 
| 59 | 
            -
            #    df = pd.read_csv('Predictions.csv')
         | 
| 60 | 
            -
            #    df = df.rename(columns={
         | 
| 61 | 
            -
            #    'Price': 'Real Price',
         | 
| 62 | 
            -
            #    'DNN1': 'Neural Network 1',
         | 
| 63 | 
            -
            #    'DNN2': 'Neural Network 2',
         | 
| 64 | 
            -
            #    'DNN3': 'Neural Network 3',
         | 
| 65 | 
            -
            #    'DNN4': 'Neural Network 4',
         | 
| 66 | 
            -
            #    'DNN_Ensemble': 'Neural Network Ensemble',
         | 
| 67 | 
            -
            #    'LEAR56': 'Regularized Linear Model 1',
         | 
| 68 | 
            -
            #    'LEAR84': 'Regularized Linear Model 2',
         | 
| 69 | 
            -
            #    'LEAR112': 'Regularized Linear Model 3',
         | 
| 70 | 
            -
            #    'LEAR730': 'Regularized Linear Model 4',
         | 
| 71 | 
            -
            #    'LEAR_Ensemble': 'Regularized Linear Model Ensemble',
         | 
| 72 | 
            -
            #    'Persis': 'Persistence Model',
         | 
| 73 | 
            -
            #    'Hybrid_Ensemble': 'Hybrid Ensemble'
         | 
| 74 | 
            -
            #})
         | 
| 75 | 
            -
            #    df['Date'] = pd.to_datetime(df['Date'], dayfirst=True)
         | 
| 76 | 
            -
            #    df_filtered = df.dropna(subset=['Real Price'])
         | 
| 77 | 
            -
            #   return df, df_filtered
         | 
| 78 | 
            -
             | 
| 79 | 
            -
            #df, df_filtered = load_data_predictions()
         | 
| 80 | 
            -
             | 
| 81 | 
             
            min_date_allowed_pred = df_filtered['Date'].min().date()
         | 
| 82 | 
             
            max_date_allowed_pred = df_filtered['Date'].max().date()
         | 
| 83 |  | 
|  | |
| 6 | 
             
            from io import StringIO
         | 
| 7 | 
             
            import base64
         | 
| 8 |  | 
|  | |
| 9 | 
             
            def load_data_predictions(github_token):
         | 
| 10 | 
            +
                """
         | 
| 11 | 
            +
                Fetch Predictions.csv from the GitHub 'Forecast_DAM_V2' repository 
         | 
| 12 | 
            +
                via the blob SHA. This works for files larger than 1 MB.
         | 
| 13 | 
            +
                """
         | 
| 14 | 
            +
                owner = "mmmapms"
         | 
| 15 | 
            +
                repo = "Forecast_DAM_V2"
         | 
| 16 | 
            +
                file_path = "Predictions.csv"
         | 
| 17 | 
            +
             | 
| 18 | 
            +
                # 1. Get file metadata (including SHA) from the “contents” endpoint
         | 
| 19 | 
            +
                url_contents = f"https://api.github.com/repos/{owner}/{repo}/contents/{file_path}"
         | 
| 20 | 
            +
                headers_contents = {
         | 
| 21 | 
            +
                    "Authorization": f"token {github_token}",
         | 
| 22 | 
            +
                }
         | 
| 23 | 
            +
                response_contents = requests.get(url_contents, headers=headers_contents)
         | 
| 24 | 
            +
                st.write("Status code (contents):", response_contents.status_code)
         | 
| 25 | 
            +
                st.write("Response JSON (contents):", response_contents.json())
         | 
| 26 | 
            +
             | 
| 27 | 
            +
                if response_contents.status_code != 200:
         | 
| 28 | 
            +
                    st.error("Failed to download file metadata. Check token and file path.")
         | 
| 29 | 
            +
                    return pd.DataFrame(), pd.DataFrame()
         | 
| 30 |  | 
| 31 | 
            +
                json_data = response_contents.json()
         | 
| 32 | 
            +
                # We expect "sha" to be present for the file
         | 
| 33 | 
            +
                if "sha" not in json_data:
         | 
| 34 | 
            +
                    st.error("No 'sha' field found in JSON response. File might be missing.")
         | 
| 35 | 
            +
                    return pd.DataFrame(), pd.DataFrame()
         | 
| 36 |  | 
| 37 | 
            +
                sha = json_data["sha"]
         | 
| 38 | 
            +
             | 
| 39 | 
            +
                # 2. Use the “blobs” endpoint to fetch the raw file content
         | 
| 40 | 
            +
                url_blob = f"https://api.github.com/repos/{owner}/{repo}/git/blobs/{sha}"
         | 
| 41 | 
            +
                headers_blob = {
         | 
| 42 | 
            +
                    "Authorization": f"token {github_token}",
         | 
| 43 | 
            +
                    "Accept": "application/vnd.github.v3.raw",  # crucial for large files
         | 
| 44 | 
            +
                }
         | 
| 45 | 
            +
                response_blob = requests.get(url_blob, headers=headers_blob)
         | 
| 46 | 
            +
             | 
| 47 | 
            +
                if response_blob.status_code != 200:
         | 
| 48 | 
            +
                    st.error(f"Failed to fetch raw blob. Status code: {response_blob.status_code}")
         | 
| 49 | 
            +
                    return pd.DataFrame(), pd.DataFrame()
         | 
| 50 |  | 
| 51 | 
            +
                # The response body is the raw CSV text
         | 
| 52 | 
            +
                csv_text = response_blob.text
         | 
| 53 | 
            +
                csv_content = StringIO(csv_text)
         | 
| 54 | 
            +
             | 
| 55 | 
            +
                # 3. Read the CSV into a Pandas DataFrame
         | 
| 56 | 
            +
                df = pd.read_csv(csv_content, encoding='utf-8')
         | 
| 57 | 
            +
             | 
| 58 | 
            +
                # 4. Rename columns as needed
         | 
| 59 | 
            +
                df = df.rename(columns={
         | 
| 60 | 
             
                    'Price': 'Real Price',
         | 
| 61 | 
             
                    'DNN1': 'Neural Network 1',
         | 
| 62 | 
             
                    'DNN2': 'Neural Network 2',
         | 
|  | |
| 69 | 
             
                    'Persis': 'Persistence Model',
         | 
| 70 | 
             
                    'Hybrid_Ensemble': 'Hybrid Ensemble',
         | 
| 71 | 
             
                    'Weighted_Ensemble': 'Weighted Ensemble'
         | 
| 72 | 
            +
                })
         | 
| 73 | 
            +
             | 
| 74 | 
            +
                # 5. Parse dates and filter
         | 
| 75 | 
            +
                df['Date'] = pd.to_datetime(df['Date'], dayfirst=True)
         | 
| 76 | 
            +
                df_filtered = df.dropna(subset=['Real Price'])
         | 
| 77 | 
            +
             | 
| 78 | 
            +
                return df, df_filtered
         | 
| 79 |  | 
| 80 |  | 
| 81 | 
             
            github_token = st.secrets["GitHub_Token_Margarida"]
         | 
| 82 |  | 
| 83 | 
             
            if github_token:
         | 
| 84 | 
             
                df, df_filtered = load_data_predictions(github_token)
         | 
|  | |
| 85 | 
             
            else:
         | 
| 86 | 
             
                st.warning("Please enter your GitHub Personal Access Token to proceed.")
         | 
| 87 |  | 
| 88 |  | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 89 | 
             
            min_date_allowed_pred = df_filtered['Date'].min().date()
         | 
| 90 | 
             
            max_date_allowed_pred = df_filtered['Date'].max().date()
         | 
| 91 |  |