Spaces:
Running
Running
Update interim.py
Browse files- interim.py +36 -26
interim.py
CHANGED
@@ -14,7 +14,17 @@ from langchain_community.document_loaders import (
|
|
14 |
from datetime import datetime
|
15 |
import pytz
|
16 |
|
17 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
class DocumentRAG:
|
19 |
def __init__(self):
|
20 |
self.document_store = None
|
@@ -28,6 +38,10 @@ class DocumentRAG:
|
|
28 |
if not self.api_key:
|
29 |
raise ValueError("API Key not found. Make sure to set the 'OPENAI_API_KEY' environment variable.")
|
30 |
|
|
|
|
|
|
|
|
|
31 |
def process_documents(self, uploaded_files):
|
32 |
"""Process uploaded files by saving them temporarily and extracting content."""
|
33 |
if not self.api_key:
|
@@ -51,14 +65,13 @@ class DocumentRAG:
|
|
51 |
elif temp_file_path.endswith('.csv'):
|
52 |
loader = CSVLoader(temp_file_path)
|
53 |
else:
|
54 |
-
|
55 |
|
56 |
# Load the documents
|
57 |
try:
|
58 |
documents.extend(loader.load())
|
59 |
except Exception as e:
|
60 |
-
|
61 |
-
continue
|
62 |
|
63 |
if not documents:
|
64 |
return "No valid documents were processed. Please check your files."
|
@@ -77,7 +90,12 @@ class DocumentRAG:
|
|
77 |
|
78 |
# Create embeddings and initialize retrieval chain
|
79 |
embeddings = OpenAIEmbeddings(api_key=self.api_key)
|
80 |
-
self.document_store = Chroma.from_documents(
|
|
|
|
|
|
|
|
|
|
|
81 |
self.qa_chain = ConversationalRetrievalChain.from_llm(
|
82 |
ChatOpenAI(temperature=0, model_name='gpt-4', api_key=self.api_key),
|
83 |
self.document_store.as_retriever(search_kwargs={'k': 6}),
|
@@ -109,6 +127,7 @@ class DocumentRAG:
|
|
109 |
return f"Error generating summary: {str(e)}"
|
110 |
|
111 |
def handle_query(self, question, history):
|
|
|
112 |
if not self.qa_chain:
|
113 |
return history + [("System", "Please process the documents first.")]
|
114 |
try:
|
@@ -131,21 +150,16 @@ class DocumentRAG:
|
|
131 |
except Exception as e:
|
132 |
return history + [("System", f"Error: {str(e)}")]
|
133 |
|
|
|
|
|
|
|
|
|
134 |
# Streamlit UI
|
135 |
st.title("Document Analyzer and Podcast Generator")
|
136 |
|
137 |
# Fetch the API key status
|
138 |
if "OPENAI_API_KEY" not in os.environ or not os.getenv("OPENAI_API_KEY"):
|
139 |
st.error("The 'OPENAI_API_KEY' environment variable is not set. Please configure it in your hosting environment.")
|
140 |
-
else:
|
141 |
-
st.success("API Key successfully loaded from environment variable.")
|
142 |
-
|
143 |
-
# Initialize RAG system
|
144 |
-
try:
|
145 |
-
rag_system = DocumentRAG()
|
146 |
-
except ValueError as e:
|
147 |
-
st.error(str(e))
|
148 |
-
st.stop()
|
149 |
|
150 |
# File upload
|
151 |
st.subheader("Step 1: Upload Documents")
|
@@ -154,28 +168,24 @@ uploaded_files = st.file_uploader("Upload files (PDF, TXT, CSV)", accept_multipl
|
|
154 |
if st.button("Process Documents"):
|
155 |
if uploaded_files:
|
156 |
# Process the uploaded files
|
157 |
-
result = rag_system.process_documents(uploaded_files)
|
158 |
-
|
159 |
-
|
160 |
-
if isinstance(result, str):
|
161 |
-
if "successfully" in result:
|
162 |
-
st.success(result)
|
163 |
-
else:
|
164 |
-
st.error(result)
|
165 |
else:
|
166 |
-
st.error(
|
167 |
else:
|
168 |
st.warning("No files uploaded.")
|
169 |
|
170 |
# Document Q&A
|
171 |
st.subheader("Step 2: Ask Questions")
|
172 |
-
if rag_system.qa_chain:
|
173 |
history = []
|
174 |
user_question = st.text_input("Ask a question:")
|
175 |
if st.button("Submit Question"):
|
176 |
-
|
|
|
177 |
for question, answer in history:
|
178 |
st.chat_message("user").write(question)
|
179 |
st.chat_message("assistant").write(answer)
|
180 |
else:
|
181 |
-
st.info("Please process documents before asking questions.")
|
|
|
14 |
from datetime import datetime
|
15 |
import pytz
|
16 |
|
17 |
+
from langchain.chains import ConversationalRetrievalChain
|
18 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
19 |
+
from langchain_openai import ChatOpenAI, OpenAIEmbeddings
|
20 |
+
from langchain_community.vectorstores import Chroma
|
21 |
+
from langchain_community.document_loaders import PyPDFLoader, TextLoader, CSVLoader
|
22 |
+
import os
|
23 |
+
import tempfile
|
24 |
+
from datetime import datetime
|
25 |
+
import pytz
|
26 |
+
|
27 |
+
|
28 |
class DocumentRAG:
|
29 |
def __init__(self):
|
30 |
self.document_store = None
|
|
|
38 |
if not self.api_key:
|
39 |
raise ValueError("API Key not found. Make sure to set the 'OPENAI_API_KEY' environment variable.")
|
40 |
|
41 |
+
# Persistent directory for Chroma to avoid tenant-related errors
|
42 |
+
self.chroma_persist_dir = "./chroma_storage"
|
43 |
+
os.makedirs(self.chroma_persist_dir, exist_ok=True)
|
44 |
+
|
45 |
def process_documents(self, uploaded_files):
|
46 |
"""Process uploaded files by saving them temporarily and extracting content."""
|
47 |
if not self.api_key:
|
|
|
65 |
elif temp_file_path.endswith('.csv'):
|
66 |
loader = CSVLoader(temp_file_path)
|
67 |
else:
|
68 |
+
return f"Unsupported file type: {uploaded_file.name}"
|
69 |
|
70 |
# Load the documents
|
71 |
try:
|
72 |
documents.extend(loader.load())
|
73 |
except Exception as e:
|
74 |
+
return f"Error loading {uploaded_file.name}: {str(e)}"
|
|
|
75 |
|
76 |
if not documents:
|
77 |
return "No valid documents were processed. Please check your files."
|
|
|
90 |
|
91 |
# Create embeddings and initialize retrieval chain
|
92 |
embeddings = OpenAIEmbeddings(api_key=self.api_key)
|
93 |
+
self.document_store = Chroma.from_documents(
|
94 |
+
documents,
|
95 |
+
embeddings,
|
96 |
+
persist_directory=self.chroma_persist_dir # Persistent directory for Chroma
|
97 |
+
)
|
98 |
+
|
99 |
self.qa_chain = ConversationalRetrievalChain.from_llm(
|
100 |
ChatOpenAI(temperature=0, model_name='gpt-4', api_key=self.api_key),
|
101 |
self.document_store.as_retriever(search_kwargs={'k': 6}),
|
|
|
127 |
return f"Error generating summary: {str(e)}"
|
128 |
|
129 |
def handle_query(self, question, history):
|
130 |
+
"""Handle user queries."""
|
131 |
if not self.qa_chain:
|
132 |
return history + [("System", "Please process the documents first.")]
|
133 |
try:
|
|
|
150 |
except Exception as e:
|
151 |
return history + [("System", f"Error: {str(e)}")]
|
152 |
|
153 |
+
# Initialize RAG system in session state
|
154 |
+
if "rag_system" not in st.session_state:
|
155 |
+
st.session_state.rag_system = DocumentRAG()
|
156 |
+
|
157 |
# Streamlit UI
|
158 |
st.title("Document Analyzer and Podcast Generator")
|
159 |
|
160 |
# Fetch the API key status
|
161 |
if "OPENAI_API_KEY" not in os.environ or not os.getenv("OPENAI_API_KEY"):
|
162 |
st.error("The 'OPENAI_API_KEY' environment variable is not set. Please configure it in your hosting environment.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
163 |
|
164 |
# File upload
|
165 |
st.subheader("Step 1: Upload Documents")
|
|
|
168 |
if st.button("Process Documents"):
|
169 |
if uploaded_files:
|
170 |
# Process the uploaded files
|
171 |
+
result = st.session_state.rag_system.process_documents(uploaded_files)
|
172 |
+
if "successfully" in result:
|
173 |
+
st.success(result)
|
|
|
|
|
|
|
|
|
|
|
174 |
else:
|
175 |
+
st.error(result)
|
176 |
else:
|
177 |
st.warning("No files uploaded.")
|
178 |
|
179 |
# Document Q&A
|
180 |
st.subheader("Step 2: Ask Questions")
|
181 |
+
if st.session_state.rag_system.qa_chain:
|
182 |
history = []
|
183 |
user_question = st.text_input("Ask a question:")
|
184 |
if st.button("Submit Question"):
|
185 |
+
# Handle the user query
|
186 |
+
history = st.session_state.rag_system.handle_query(user_question, history)
|
187 |
for question, answer in history:
|
188 |
st.chat_message("user").write(question)
|
189 |
st.chat_message("assistant").write(answer)
|
190 |
else:
|
191 |
+
st.info("Please process documents before asking questions.")
|