Spaces:
Running
Running
Create interim.py
Browse files- interim.py +181 -0
interim.py
ADDED
@@ -0,0 +1,181 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import os
|
3 |
+
from openai import OpenAI
|
4 |
+
import tempfile
|
5 |
+
from langchain.chains import ConversationalRetrievalChain
|
6 |
+
from langchain_openai import ChatOpenAI, OpenAIEmbeddings
|
7 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
8 |
+
from langchain_community.vectorstores import Chroma
|
9 |
+
from langchain_community.document_loaders import (
|
10 |
+
PyPDFLoader,
|
11 |
+
TextLoader,
|
12 |
+
CSVLoader
|
13 |
+
)
|
14 |
+
from datetime import datetime
|
15 |
+
import pytz
|
16 |
+
|
17 |
+
# DocumentRAG class with environment variable support for API Key
|
18 |
+
class DocumentRAG:
|
19 |
+
def __init__(self):
|
20 |
+
self.document_store = None
|
21 |
+
self.qa_chain = None
|
22 |
+
self.document_summary = ""
|
23 |
+
self.chat_history = []
|
24 |
+
self.last_processed_time = None
|
25 |
+
self.api_key = os.getenv("OPENAI_API_KEY") # Fetch the API key from environment variable
|
26 |
+
self.init_time = datetime.now(pytz.UTC)
|
27 |
+
|
28 |
+
if not self.api_key:
|
29 |
+
raise ValueError("API Key not found. Make sure to set the 'OPENAI_API_KEY' environment variable.")
|
30 |
+
|
31 |
+
def process_documents(self, uploaded_files):
|
32 |
+
"""Process uploaded files by saving them temporarily and extracting content."""
|
33 |
+
if not self.api_key:
|
34 |
+
return "Please set the OpenAI API key in the environment variables."
|
35 |
+
if not uploaded_files:
|
36 |
+
return "Please upload documents first."
|
37 |
+
|
38 |
+
try:
|
39 |
+
documents = []
|
40 |
+
for uploaded_file in uploaded_files:
|
41 |
+
# Save uploaded file to a temporary location
|
42 |
+
temp_file_path = tempfile.NamedTemporaryFile(delete=False, suffix=os.path.splitext(uploaded_file.name)[1]).name
|
43 |
+
with open(temp_file_path, "wb") as temp_file:
|
44 |
+
temp_file.write(uploaded_file.read())
|
45 |
+
|
46 |
+
# Determine the loader based on the file type
|
47 |
+
if temp_file_path.endswith('.pdf'):
|
48 |
+
loader = PyPDFLoader(temp_file_path)
|
49 |
+
elif temp_file_path.endswith('.txt'):
|
50 |
+
loader = TextLoader(temp_file_path)
|
51 |
+
elif temp_file_path.endswith('.csv'):
|
52 |
+
loader = CSVLoader(temp_file_path)
|
53 |
+
else:
|
54 |
+
continue
|
55 |
+
|
56 |
+
# Load the documents
|
57 |
+
try:
|
58 |
+
documents.extend(loader.load())
|
59 |
+
except Exception as e:
|
60 |
+
print(f"Error loading {temp_file_path}: {str(e)}")
|
61 |
+
continue
|
62 |
+
|
63 |
+
if not documents:
|
64 |
+
return "No valid documents were processed. Please check your files."
|
65 |
+
|
66 |
+
# Split text for better processing
|
67 |
+
text_splitter = RecursiveCharacterTextSplitter(
|
68 |
+
chunk_size=1000,
|
69 |
+
chunk_overlap=200,
|
70 |
+
length_function=len
|
71 |
+
)
|
72 |
+
documents = text_splitter.split_documents(documents)
|
73 |
+
|
74 |
+
# Combine text for summary
|
75 |
+
combined_text = " ".join([doc.page_content for doc in documents])
|
76 |
+
self.document_summary = self.generate_summary(combined_text)
|
77 |
+
|
78 |
+
# Create embeddings and initialize retrieval chain
|
79 |
+
embeddings = OpenAIEmbeddings(api_key=self.api_key)
|
80 |
+
self.document_store = Chroma.from_documents(documents, embeddings)
|
81 |
+
self.qa_chain = ConversationalRetrievalChain.from_llm(
|
82 |
+
ChatOpenAI(temperature=0, model_name='gpt-4', api_key=self.api_key),
|
83 |
+
self.document_store.as_retriever(search_kwargs={'k': 6}),
|
84 |
+
return_source_documents=True,
|
85 |
+
verbose=False
|
86 |
+
)
|
87 |
+
|
88 |
+
self.last_processed_time = datetime.now(pytz.UTC)
|
89 |
+
return "Documents processed successfully!"
|
90 |
+
except Exception as e:
|
91 |
+
return f"Error processing documents: {str(e)}"
|
92 |
+
|
93 |
+
def generate_summary(self, text):
|
94 |
+
"""Generate a summary of the provided text."""
|
95 |
+
if not self.api_key:
|
96 |
+
return "API Key not set. Please set it in the environment variables."
|
97 |
+
try:
|
98 |
+
client = OpenAI(api_key=self.api_key)
|
99 |
+
response = client.chat.completions.create(
|
100 |
+
model="gpt-4",
|
101 |
+
messages=[
|
102 |
+
{"role": "system", "content": "Summarize the document content concisely and provide 3-5 key points for discussion."},
|
103 |
+
{"role": "user", "content": text[:4000]}
|
104 |
+
],
|
105 |
+
temperature=0.3
|
106 |
+
)
|
107 |
+
return response.choices[0].message.content
|
108 |
+
except Exception as e:
|
109 |
+
return f"Error generating summary: {str(e)}"
|
110 |
+
|
111 |
+
def handle_query(self, question, history):
|
112 |
+
if not self.qa_chain:
|
113 |
+
return history + [("System", "Please process the documents first.")]
|
114 |
+
try:
|
115 |
+
preface = """
|
116 |
+
Instruction: Respond in English. Be professional and concise, keeping the response under 300 words.
|
117 |
+
If you cannot provide an answer, say: "I am not sure about this question. Please try asking something else."
|
118 |
+
"""
|
119 |
+
query = f"{preface}\nQuery: {question}"
|
120 |
+
|
121 |
+
result = self.qa_chain({
|
122 |
+
"question": query,
|
123 |
+
"chat_history": [(q, a) for q, a in history]
|
124 |
+
})
|
125 |
+
|
126 |
+
if "answer" not in result:
|
127 |
+
return history + [("System", "Sorry, an error occurred.")]
|
128 |
+
|
129 |
+
history.append((question, result["answer"]))
|
130 |
+
return history
|
131 |
+
except Exception as e:
|
132 |
+
return history + [("System", f"Error: {str(e)}")]
|
133 |
+
|
134 |
+
# Streamlit UI
|
135 |
+
st.title("Document Analyzer and Podcast Generator")
|
136 |
+
|
137 |
+
# Fetch the API key status
|
138 |
+
if "OPENAI_API_KEY" not in os.environ or not os.getenv("OPENAI_API_KEY"):
|
139 |
+
st.error("The 'OPENAI_API_KEY' environment variable is not set. Please configure it in your hosting environment.")
|
140 |
+
else:
|
141 |
+
st.success("API Key successfully loaded from environment variable.")
|
142 |
+
|
143 |
+
# Initialize RAG system
|
144 |
+
try:
|
145 |
+
rag_system = DocumentRAG()
|
146 |
+
except ValueError as e:
|
147 |
+
st.error(str(e))
|
148 |
+
st.stop()
|
149 |
+
|
150 |
+
# File upload
|
151 |
+
st.subheader("Step 1: Upload Documents")
|
152 |
+
uploaded_files = st.file_uploader("Upload files (PDF, TXT, CSV)", accept_multiple_files=True)
|
153 |
+
|
154 |
+
if st.button("Process Documents"):
|
155 |
+
if uploaded_files:
|
156 |
+
# Process the uploaded files
|
157 |
+
result = rag_system.process_documents(uploaded_files)
|
158 |
+
|
159 |
+
# Ensure that result is a string and display appropriately
|
160 |
+
if isinstance(result, str):
|
161 |
+
if "successfully" in result:
|
162 |
+
st.success(result)
|
163 |
+
else:
|
164 |
+
st.error(result)
|
165 |
+
else:
|
166 |
+
st.error("An unexpected error occurred during document processing.")
|
167 |
+
else:
|
168 |
+
st.warning("No files uploaded.")
|
169 |
+
|
170 |
+
# Document Q&A
|
171 |
+
st.subheader("Step 2: Ask Questions")
|
172 |
+
if rag_system.qa_chain:
|
173 |
+
history = []
|
174 |
+
user_question = st.text_input("Ask a question:")
|
175 |
+
if st.button("Submit Question"):
|
176 |
+
history = rag_system.handle_query(user_question, history)
|
177 |
+
for question, answer in history:
|
178 |
+
st.chat_message("user").write(question)
|
179 |
+
st.chat_message("assistant").write(answer)
|
180 |
+
else:
|
181 |
+
st.info("Please process documents before asking questions.")
|