Spaces:
Running
Running
import streamlit as st | |
import os | |
from openai import OpenAI | |
import tempfile | |
from langchain.chains import ConversationalRetrievalChain | |
from langchain_openai import ChatOpenAI, OpenAIEmbeddings | |
from langchain.text_splitter import RecursiveCharacterTextSplitter | |
from langchain_community.vectorstores import Chroma | |
from langchain_community.document_loaders import ( | |
PyPDFLoader, | |
TextLoader, | |
CSVLoader | |
) | |
from datetime import datetime | |
from pydub import AudioSegment | |
import pytz | |
from langchain.chains import ConversationalRetrievalChain | |
from langchain.text_splitter import RecursiveCharacterTextSplitter | |
from langchain_openai import ChatOpenAI, OpenAIEmbeddings | |
from langchain_community.vectorstores import Chroma | |
from langchain_community.document_loaders import PyPDFLoader, TextLoader, CSVLoader | |
import os | |
import tempfile | |
from datetime import datetime | |
import pytz | |
class DocumentRAG: | |
def __init__(self): | |
self.document_store = None | |
self.qa_chain = None | |
self.document_summary = "" | |
self.chat_history = [] | |
self.last_processed_time = None | |
self.api_key = os.getenv("OPENAI_API_KEY") # Fetch the API key from environment variable | |
self.init_time = datetime.now(pytz.UTC) | |
if not self.api_key: | |
raise ValueError("API Key not found. Make sure to set the 'OPENAI_API_KEY' environment variable.") | |
# Persistent directory for Chroma to avoid tenant-related errors | |
self.chroma_persist_dir = "./chroma_storage" | |
os.makedirs(self.chroma_persist_dir, exist_ok=True) | |
def process_documents(self, uploaded_files): | |
"""Process uploaded files by saving them temporarily and extracting content.""" | |
if not self.api_key: | |
return "Please set the OpenAI API key in the environment variables." | |
if not uploaded_files: | |
return "Please upload documents first." | |
try: | |
documents = [] | |
for uploaded_file in uploaded_files: | |
# Save uploaded file to a temporary location | |
temp_file_path = tempfile.NamedTemporaryFile(delete=False, suffix=os.path.splitext(uploaded_file.name)[1]).name | |
with open(temp_file_path, "wb") as temp_file: | |
temp_file.write(uploaded_file.read()) | |
# Determine the loader based on the file type | |
if temp_file_path.endswith('.pdf'): | |
loader = PyPDFLoader(temp_file_path) | |
elif temp_file_path.endswith('.txt'): | |
loader = TextLoader(temp_file_path) | |
elif temp_file_path.endswith('.csv'): | |
loader = CSVLoader(temp_file_path) | |
else: | |
return f"Unsupported file type: {uploaded_file.name}" | |
# Load the documents | |
try: | |
documents.extend(loader.load()) | |
except Exception as e: | |
return f"Error loading {uploaded_file.name}: {str(e)}" | |
if not documents: | |
return "No valid documents were processed. Please check your files." | |
# Split text for better processing | |
text_splitter = RecursiveCharacterTextSplitter( | |
chunk_size=1000, | |
chunk_overlap=200, | |
length_function=len | |
) | |
documents = text_splitter.split_documents(documents) | |
# Combine text for later summary generation | |
self.document_text = " ".join([doc.page_content for doc in documents]) # Store for later use | |
# Create embeddings and initialize retrieval chain | |
embeddings = OpenAIEmbeddings(api_key=self.api_key) | |
self.document_store = Chroma.from_documents( | |
documents, | |
embeddings, | |
persist_directory=self.chroma_persist_dir # Persistent directory for Chroma | |
) | |
self.qa_chain = ConversationalRetrievalChain.from_llm( | |
ChatOpenAI(temperature=0, model_name='gpt-4', api_key=self.api_key), | |
self.document_store.as_retriever(search_kwargs={'k': 6}), | |
return_source_documents=True, | |
verbose=False | |
) | |
self.last_processed_time = datetime.now(pytz.UTC) | |
return "Documents processed successfully!" | |
except Exception as e: | |
return f"Error processing documents: {str(e)}" | |
def generate_summary(self, text, language): | |
"""Generate a summary of the provided text in the specified language.""" | |
if not self.api_key: | |
return "API Key not set. Please set it in the environment variables." | |
try: | |
client = OpenAI(api_key=self.api_key) | |
response = client.chat.completions.create( | |
model="gpt-4", | |
messages=[ | |
{"role": "system", "content": f"Summarize the document content concisely in {language}. Provide 3-5 key points for discussion."}, | |
{"role": "user", "content": text[:4000]} | |
], | |
temperature=0.3 | |
) | |
return response.choices[0].message.content | |
except Exception as e: | |
return f"Error generating summary: {str(e)}" | |
def create_podcast(self, language): | |
"""Generate a podcast script and audio based on doc summary in the specified language.""" | |
if not self.document_summary: | |
return "Please process documents before generating a podcast.", None | |
if not self.api_key: | |
return "Please set the OpenAI API key in the environment variables.", None | |
try: | |
client = OpenAI(api_key=self.api_key) | |
# Generate podcast script | |
script_response = client.chat.completions.create( | |
model="gpt-4", | |
messages=[ | |
{"role": "system", "content": f"You are a professional podcast producer. Create a natural dialogue in {language} based on the provided document summary."}, | |
{"role": "user", "content": f"""Based on the following document summary, create a 1-2 minute podcast script: | |
1. Clearly label the dialogue as 'Host 1:' and 'Host 2:' | |
2. Keep the content engaging and insightful. | |
3. Use conversational language suitable for a podcast. | |
4. Ensure the script has a clear opening and closing. | |
Document Summary: {self.document_summary}"""} | |
], | |
temperature=0.7 | |
) | |
script = script_response.choices[0].message.content | |
if not script: | |
return "Error: Failed to generate podcast script.", None | |
# Convert script to audio | |
final_audio = AudioSegment.empty() | |
is_first_speaker = True | |
lines = [line.strip() for line in script.split("\n") if line.strip()] | |
for line in lines: | |
if ":" not in line: | |
continue | |
speaker, text = line.split(":", 1) | |
if not text.strip(): | |
continue | |
try: | |
voice = "nova" if is_first_speaker else "onyx" | |
audio_response = client.audio.speech.create( | |
model="tts-1", | |
voice=voice, | |
input=text.strip() | |
) | |
temp_audio_file = tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") | |
audio_response.stream_to_file(temp_audio_file.name) | |
segment = AudioSegment.from_file(temp_audio_file.name) | |
final_audio += segment | |
final_audio += AudioSegment.silent(duration=300) | |
is_first_speaker = not is_first_speaker | |
except Exception as e: | |
print(f"Error generating audio for line: {text}") | |
print(f"Details: {e}") | |
continue | |
if len(final_audio) == 0: | |
return "Error: No audio could be generated.", None | |
output_file = tempfile.NamedTemporaryFile(delete=False, suffix=".mp3").name | |
final_audio.export(output_file, format="mp3") | |
return script, output_file | |
except Exception as e: | |
return f"Error generating podcast: {str(e)}", None | |
def handle_query(self, question, history, language): | |
"""Handle user queries in the specified language.""" | |
if not self.qa_chain: | |
return history + [("System", "Please process the documents first.")] | |
try: | |
preface = """ | |
Instruction: Respond in {language}. Be professional and concise, keeping the response under 300 words. | |
If you cannot provide an answer, say: "I am not sure about this question. Please try asking something else." | |
""" | |
query = f"{preface}\nQuery: {question}" | |
result = self.qa_chain({ | |
"question": query, | |
"chat_history": [(q, a) for q, a in history] | |
}) | |
if "answer" not in result: | |
return history + [("System", "Sorry, an error occurred.")] | |
history.append((question, result["answer"])) | |
return history | |
except Exception as e: | |
return history + [("System", f"Error: {str(e)}")] | |
# Initialize RAG system in session state | |
if "rag_system" not in st.session_state: | |
st.session_state.rag_system = DocumentRAG() | |
# Sidebar | |
with st.sidebar: | |
st.title("About") | |
st.markdown( | |
""" | |
This app is inspired by the [RAG_HW HuggingFace Space](https://huggingface.co/spaces/wint543/RAG_HW). | |
It allows users to upload documents, generate summaries, ask questions, and create podcasts. | |
""" | |
) | |
st.markdown("### Steps:") | |
st.markdown("1. Upload documents.") | |
st.markdown("2. Generate summary.") | |
st.markdown("3. Ask questions.") | |
st.markdown("4. Create podcast.") | |
# Streamlit UI | |
# Sidebar | |
#with st.sidebar: | |
#st.title("About") | |
#st.markdown( | |
#""" | |
#This app is inspired by the [RAG_HW HuggingFace Space](https://huggingface.co/spaces/wint543/RAG_HW). | |
#It allows users to: | |
#1. Upload and process documents | |
#2. Generate summaries | |
#3. Ask questions | |
#4. Create podcasts | |
#""" | |
#) | |
# Main App | |
st.title("Document Analyzer & Podcast Generator") | |
# Step 1: Upload and Process Documents | |
st.subheader("Step 1: Upload and Process Documents") | |
uploaded_files = st.file_uploader("Upload files (PDF, TXT, CSV)", accept_multiple_files=True) | |
if st.button("Process Documents"): | |
if uploaded_files: | |
with st.spinner("Processing documents, please wait..."): | |
result = st.session_state.rag_system.process_documents(uploaded_files) | |
if "successfully" in result: | |
st.success(result) | |
else: | |
st.error(result) | |
else: | |
st.warning("No files uploaded.") | |
# Step 2: Generate Summaries | |
st.subheader("Step 2: Generate Summaries") | |
st.write("Select Summary Language:") | |
summary_language_options = ["English", "Hindi", "Spanish", "French", "German", "Chinese", "Japanese"] | |
summary_language = st.radio( | |
"", | |
summary_language_options, | |
horizontal=True, | |
key="summary_language" | |
) | |
if st.button("Generate Summary"): | |
if hasattr(st.session_state.rag_system, "document_text") and st.session_state.rag_system.document_text: | |
with st.spinner("Generating summary, please wait..."): | |
summary = st.session_state.rag_system.generate_summary(st.session_state.rag_system.document_text, summary_language) | |
if summary: | |
st.session_state.rag_system.document_summary = summary | |
st.text_area("Document Summary", summary, height=200) | |
st.success("Summary generated successfully!") | |
else: | |
st.error("Failed to generate summary.") | |
else: | |
st.info("Please process documents first to generate summaries.") | |
# Step 3: Ask Questions | |
st.subheader("Step 3: Ask Questions") | |
st.write("Select Q&A Language:") | |
qa_language_options = ["English", "Hindi", "Spanish", "French", "German", "Chinese", "Japanese"] | |
qa_language = st.radio( | |
"", | |
qa_language_options, | |
horizontal=True, | |
key="qa_language" | |
) | |
if st.session_state.rag_system.qa_chain: | |
history = [] | |
user_question = st.text_input("Ask a question:") | |
if st.button("Submit Question"): | |
with st.spinner("Answering your question, please wait..."): | |
history = st.session_state.rag_system.handle_query(user_question, history, qa_language) | |
for question, answer in history: | |
st.chat_message("user").write(question) | |
st.chat_message("assistant").write(answer) | |
else: | |
st.info("Please process documents first to enable Q&A.") | |
# Step 4: Generate Podcast | |
st.subheader("Step 4: Generate Podcast") | |
st.write("Select Podcast Language:") | |
podcast_language_options = ["English", "Hindi", "Spanish", "French", "German", "Chinese", "Japanese"] | |
podcast_language = st.radio( | |
"", | |
podcast_language_options, | |
horizontal=True, | |
key="podcast_language" | |
) | |
if st.session_state.rag_system.document_summary: | |
if st.button("Generate Podcast"): | |
with st.spinner("Generating podcast, please wait..."): | |
script, audio_path = st.session_state.rag_system.create_podcast(podcast_language) | |
if audio_path: | |
st.text_area("Generated Podcast Script", script, height=200) | |
st.audio(audio_path, format="audio/mp3") | |
st.success("Podcast generated successfully! You can listen to it above.") | |
else: | |
st.error(script) | |
else: | |
st.info("Please process documents and generate summaries before creating a podcast.") | |