Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,28 +1,17 @@
|
|
| 1 |
import os
|
| 2 |
import re
|
|
|
|
| 3 |
from datetime import datetime
|
| 4 |
import PyPDF2
|
| 5 |
import torch
|
| 6 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification, AutoModelForSeq2SeqLM
|
| 7 |
-
from
|
| 8 |
import gradio as gr
|
|
|
|
| 9 |
|
| 10 |
-
#
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
_models = {}
|
| 14 |
-
|
| 15 |
-
@classmethod
|
| 16 |
-
def get_model(cls, model_name):
|
| 17 |
-
if model_name not in cls._models:
|
| 18 |
-
cls._models[model_name] = AutoModelForSeq2SeqLM.from_pretrained(model_name)
|
| 19 |
-
return cls._models[model_name]
|
| 20 |
-
|
| 21 |
-
@classmethod
|
| 22 |
-
def get_tokenizer(cls, model_name):
|
| 23 |
-
if model_name not in cls._tokenizers:
|
| 24 |
-
cls._tokenizers[model_name] = AutoTokenizer.from_pretrained(model_name)
|
| 25 |
-
return cls._tokenizers[model_name]
|
| 26 |
|
| 27 |
# --- PDF/Text Extraction Functions --- #
|
| 28 |
def extract_text_from_file(file_path):
|
|
@@ -35,98 +24,73 @@ def extract_text_from_file(file_path):
|
|
| 35 |
raise ValueError("Unsupported file type. Only PDF and TXT files are accepted.")
|
| 36 |
|
| 37 |
def extract_text_from_pdf(pdf_file_path):
|
| 38 |
-
"""Extracts text from a PDF file
|
| 39 |
-
text = []
|
| 40 |
with open(pdf_file_path, 'rb') as pdf_file:
|
| 41 |
pdf_reader = PyPDF2.PdfReader(pdf_file)
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
if page_text:
|
| 45 |
-
text.append(page_text)
|
| 46 |
-
else:
|
| 47 |
-
print(f"Warning: Page {i} could not be extracted.")
|
| 48 |
-
return ''.join(text)
|
| 49 |
|
| 50 |
def extract_text_from_txt(txt_file_path):
|
| 51 |
"""Extracts text from a .txt file."""
|
| 52 |
with open(txt_file_path, 'r', encoding='utf-8') as txt_file:
|
| 53 |
return txt_file.read()
|
| 54 |
|
| 55 |
-
# --- Skill Extraction with
|
| 56 |
-
def
|
| 57 |
-
"""Extracts skills from the text using
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
# --- Job Description Processing
|
| 69 |
-
def process_job_description(
|
| 70 |
-
"""
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
similarity_score
|
| 93 |
-
|
| 94 |
-
# Convert similarity score to percentage
|
| 95 |
-
similarity_percentage = similarity_score * 100
|
| 96 |
-
return similarity_percentage
|
| 97 |
-
|
| 98 |
-
# --- Thresholds --- #
|
| 99 |
-
def categorize_similarity(score):
|
| 100 |
-
"""Categorizes the similarity score into thresholds for better insights."""
|
| 101 |
-
if score >= 80:
|
| 102 |
-
return "High Match"
|
| 103 |
-
elif score >= 50:
|
| 104 |
-
return "Moderate Match"
|
| 105 |
-
else:
|
| 106 |
-
return "Low Match"
|
| 107 |
|
| 108 |
-
# --- Communication Generation
|
| 109 |
-
def communication_generator(resume_skills, job_description_skills,
|
| 110 |
-
"""Generates a
|
| 111 |
model_name = "google/flan-t5-base"
|
| 112 |
-
tokenizer =
|
| 113 |
-
model =
|
| 114 |
|
| 115 |
-
# Assess candidate fit based on similarity
|
| 116 |
-
fit_status = "
|
| 117 |
-
"moderate fit" if skills_similarity >= 50 else "weak fit"
|
| 118 |
|
| 119 |
-
# Create a detailed communication message
|
| 120 |
message = (
|
| 121 |
-
f"After a
|
| 122 |
-
f"
|
| 123 |
-
f"
|
| 124 |
-
f"
|
| 125 |
-
f"
|
| 126 |
-
f"Skills such as {', '.join(resume_skills)} align {categorize_similarity(skills_similarity).lower()} with the job's requirements of {', '.join(job_description_skills)}. "
|
| 127 |
-
f"In terms of qualifications and experience, the candidate shows a {categorize_similarity(qualifications_similarity).lower()} match with the role's needs. "
|
| 128 |
-
f"Based on these findings, we believe the candidate could potentially excel in the role, "
|
| 129 |
-
f"but additional evaluation or interviews are recommended for further clarification."
|
| 130 |
)
|
| 131 |
|
| 132 |
inputs = tokenizer(message, return_tensors="pt", padding=True, truncation=True)
|
|
@@ -136,10 +100,10 @@ def communication_generator(resume_skills, job_description_skills, skills_simila
|
|
| 136 |
|
| 137 |
# --- Sentiment Analysis --- #
|
| 138 |
def sentiment_analysis(text):
|
| 139 |
-
"""Analyzes the sentiment of the text
|
| 140 |
-
model_name = "
|
| 141 |
-
tokenizer =
|
| 142 |
-
model =
|
| 143 |
|
| 144 |
inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True)
|
| 145 |
with torch.no_grad():
|
|
@@ -147,63 +111,70 @@ def sentiment_analysis(text):
|
|
| 147 |
predicted_sentiment = torch.argmax(outputs.logits).item()
|
| 148 |
return ["Negative", "Neutral", "Positive"][predicted_sentiment]
|
| 149 |
|
| 150 |
-
# ---
|
| 151 |
def analyze_resume(resume_file, job_description_file):
|
| 152 |
-
"""Analyzes the resume and job description, returning similarity score, skills,
|
| 153 |
-
# Extract resume
|
| 154 |
try:
|
| 155 |
resume_text = extract_text_from_file(resume_file.name)
|
| 156 |
job_description_text = extract_text_from_file(job_description_file.name)
|
| 157 |
except ValueError as ve:
|
| 158 |
return str(ve)
|
| 159 |
|
| 160 |
-
#
|
| 161 |
-
resume_skills = extract_skills_huggingface(resume_text)
|
| 162 |
job_description_skills = process_job_description(job_description_text)
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
job_description_experience, job_description_titles = extract_experience(job_description_text)
|
| 167 |
-
|
| 168 |
-
# Calculate semantic similarity for different sections in percentages
|
| 169 |
-
skills_similarity = calculate_semantic_similarity(' '.join(resume_skills), ' '.join(job_description_skills))
|
| 170 |
-
qualifications_similarity = calculate_semantic_similarity(' '.join(resume_qualifications), ' '.join(job_description_qualifications))
|
| 171 |
-
experience_similarity = calculate_semantic_similarity(' '.join([str(e) for e in resume_experience]), ' '.join([str(e) for e in job_description_experience]))
|
| 172 |
-
|
| 173 |
-
# Generate a communication response based on the similarity percentages
|
| 174 |
-
communication_response = communication_generator(
|
| 175 |
-
resume_skills, job_description_skills,
|
| 176 |
-
skills_similarity, qualifications_similarity, experience_similarity
|
| 177 |
-
)
|
| 178 |
-
|
| 179 |
-
# Perform Sentiment Analysis
|
| 180 |
sentiment = sentiment_analysis(resume_text)
|
| 181 |
|
| 182 |
-
# Return the results including thresholds and percentage scores
|
| 183 |
return (
|
| 184 |
-
f"
|
| 185 |
-
f"Qualifications Similarity: {qualifications_similarity:.2f}% ({categorize_similarity(qualifications_similarity)})",
|
| 186 |
-
f"Experience Similarity: {experience_similarity:.2f}% ({categorize_similarity(experience_similarity)})",
|
| 187 |
communication_response,
|
| 188 |
-
f"Sentiment
|
| 189 |
-
|
| 190 |
-
|
| 191 |
-
f"Resume Qualifications: {', '.join(resume_qualifications)}",
|
| 192 |
-
f"Job Description Qualifications: {', '.join(job_description_qualifications)}",
|
| 193 |
-
f"Resume Experience: {', '.join(map(str, resume_experience))} years, Titles: {', '.join(resume_job_titles)}",
|
| 194 |
-
f"Job Description Experience: {', '.join(map(str, job_description_experience))} years, Titles: {', '.join(job_description_titles)}"
|
| 195 |
)
|
| 196 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 197 |
# --- Gradio Interface --- #
|
| 198 |
iface = gr.Interface(
|
| 199 |
fn=analyze_resume,
|
| 200 |
-
inputs=[
|
|
|
|
|
|
|
|
|
|
| 201 |
outputs=[
|
| 202 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
| 203 |
],
|
| 204 |
-
title="Resume
|
| 205 |
-
description="
|
| 206 |
)
|
| 207 |
|
| 208 |
-
|
| 209 |
-
iface.launch()
|
|
|
|
| 1 |
import os
|
| 2 |
import re
|
| 3 |
+
import io
|
| 4 |
from datetime import datetime
|
| 5 |
import PyPDF2
|
| 6 |
import torch
|
| 7 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification, AutoModelForSeq2SeqLM
|
| 8 |
+
from groq import Groq
|
| 9 |
import gradio as gr
|
| 10 |
+
from docxtpl import DocxTemplate
|
| 11 |
|
| 12 |
+
# Set your API key for Groq
|
| 13 |
+
os.environ["GROQ_API_KEY"] = "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"
|
| 14 |
+
client = Groq(api_key=os.environ.get("GROQ_API_KEY"))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
|
| 16 |
# --- PDF/Text Extraction Functions --- #
|
| 17 |
def extract_text_from_file(file_path):
|
|
|
|
| 24 |
raise ValueError("Unsupported file type. Only PDF and TXT files are accepted.")
|
| 25 |
|
| 26 |
def extract_text_from_pdf(pdf_file_path):
|
| 27 |
+
"""Extracts text from a PDF file."""
|
|
|
|
| 28 |
with open(pdf_file_path, 'rb') as pdf_file:
|
| 29 |
pdf_reader = PyPDF2.PdfReader(pdf_file)
|
| 30 |
+
text = ''.join(page.extract_text() for page in pdf_reader.pages if page.extract_text())
|
| 31 |
+
return text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 32 |
|
| 33 |
def extract_text_from_txt(txt_file_path):
|
| 34 |
"""Extracts text from a .txt file."""
|
| 35 |
with open(txt_file_path, 'r', encoding='utf-8') as txt_file:
|
| 36 |
return txt_file.read()
|
| 37 |
|
| 38 |
+
# --- Skill Extraction with Llama Model --- #
|
| 39 |
+
def extract_skills_llama(text):
|
| 40 |
+
"""Extracts skills from the text using the Llama model via Groq API."""
|
| 41 |
+
try:
|
| 42 |
+
response = client.chat.completions.create(
|
| 43 |
+
messages=[{"role": "user", "content": f"Extract skills from the following text: {text}"}],
|
| 44 |
+
model="llama3-70b-8192",
|
| 45 |
+
)
|
| 46 |
+
skills = response.choices[0].message.content.split(', ') # Expecting a comma-separated list
|
| 47 |
+
return skills
|
| 48 |
+
except Exception as e:
|
| 49 |
+
raise RuntimeError(f"Error during skill extraction: {e}")
|
| 50 |
+
|
| 51 |
+
# --- Job Description Processing --- #
|
| 52 |
+
def process_job_description(job_description_text):
|
| 53 |
+
"""Processes the job description text and extracts relevant skills."""
|
| 54 |
+
job_description_text = preprocess_text(job_description_text)
|
| 55 |
+
return extract_skills_llama(job_description_text)
|
| 56 |
+
|
| 57 |
+
# --- Text Preprocessing --- #
|
| 58 |
+
def preprocess_text(text):
|
| 59 |
+
"""Preprocesses text for analysis (lowercase, punctuation removal)."""
|
| 60 |
+
text = text.lower()
|
| 61 |
+
text = re.sub(r'[^\w\s]', '', text) # Remove punctuation
|
| 62 |
+
return re.sub(r'\s+', ' ', text).strip() # Remove extra whitespace
|
| 63 |
+
|
| 64 |
+
# --- Resume Similarity Calculation --- #
|
| 65 |
+
def calculate_resume_similarity(resume_text, job_description_text):
|
| 66 |
+
"""Calculates similarity score between resume and job description using a sentence transformer model."""
|
| 67 |
+
model_name = "cross-encoder/stsb-roberta-base"
|
| 68 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 69 |
+
model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
| 70 |
+
|
| 71 |
+
inputs = tokenizer(resume_text, job_description_text, return_tensors="pt", padding=True, truncation=True)
|
| 72 |
+
with torch.no_grad():
|
| 73 |
+
outputs = model(**inputs)
|
| 74 |
+
similarity_score = torch.sigmoid(outputs.logits).item() # Get the raw score
|
| 75 |
+
return similarity_score
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 76 |
|
| 77 |
+
# --- Communication Generation --- #
|
| 78 |
+
def communication_generator(resume_skills, job_description_skills, similarity_score, max_length=150):
|
| 79 |
+
"""Generates a communication response based on the extracted skills from the resume and job description."""
|
| 80 |
model_name = "google/flan-t5-base"
|
| 81 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 82 |
+
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
|
| 83 |
|
| 84 |
+
# Assess candidate fit based on similarity score
|
| 85 |
+
fit_status = "fit for the job" if similarity_score >= 0.7 else "not a fit for the job"
|
|
|
|
| 86 |
|
| 87 |
+
# Create a more detailed communication message
|
| 88 |
message = (
|
| 89 |
+
f"After a thorough review of the candidate's resume, we found a significant alignment "
|
| 90 |
+
f"between their skills and the job description requirements. The candidate possesses the following "
|
| 91 |
+
f"key skills: {', '.join(resume_skills)}. These align well with the job requirements, particularly in areas such as "
|
| 92 |
+
f"{', '.join(job_description_skills)}. The candidate’s diverse expertise suggests they would make a valuable addition to our team. "
|
| 93 |
+
f"We believe the candidate is {fit_status}. If further evaluation is needed, please let us know how we can assist."
|
|
|
|
|
|
|
|
|
|
|
|
|
| 94 |
)
|
| 95 |
|
| 96 |
inputs = tokenizer(message, return_tensors="pt", padding=True, truncation=True)
|
|
|
|
| 100 |
|
| 101 |
# --- Sentiment Analysis --- #
|
| 102 |
def sentiment_analysis(text):
|
| 103 |
+
"""Analyzes the sentiment of the text."""
|
| 104 |
+
model_name = "mrm8488/distiluse-base-multilingual-cased-v2-finetuned-stsb_multi_mt-es"
|
| 105 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 106 |
+
model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
| 107 |
|
| 108 |
inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True)
|
| 109 |
with torch.no_grad():
|
|
|
|
| 111 |
predicted_sentiment = torch.argmax(outputs.logits).item()
|
| 112 |
return ["Negative", "Neutral", "Positive"][predicted_sentiment]
|
| 113 |
|
| 114 |
+
# --- Resume Analysis Function --- #
|
| 115 |
def analyze_resume(resume_file, job_description_file):
|
| 116 |
+
"""Analyzes the resume and job description, returning similarity score, skills, and communication response."""
|
| 117 |
+
# Extract resume text based on file type
|
| 118 |
try:
|
| 119 |
resume_text = extract_text_from_file(resume_file.name)
|
| 120 |
job_description_text = extract_text_from_file(job_description_file.name)
|
| 121 |
except ValueError as ve:
|
| 122 |
return str(ve)
|
| 123 |
|
| 124 |
+
# Analyze texts
|
|
|
|
| 125 |
job_description_skills = process_job_description(job_description_text)
|
| 126 |
+
resume_skills = extract_skills_llama(resume_text)
|
| 127 |
+
similarity_score = calculate_resume_similarity(resume_text, job_description_text)
|
| 128 |
+
communication_response = communication_generator(resume_skills, job_description_skills, similarity_score)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 129 |
sentiment = sentiment_analysis(resume_text)
|
| 130 |
|
|
|
|
| 131 |
return (
|
| 132 |
+
f"Similarity Score: {similarity_score * 100:.2f}%", # Convert to percentage
|
|
|
|
|
|
|
| 133 |
communication_response,
|
| 134 |
+
f"Sentiment: {sentiment}",
|
| 135 |
+
", ".join(resume_skills),
|
| 136 |
+
", ".join(job_description_skills),
|
|
|
|
|
|
|
|
|
|
|
|
|
| 137 |
)
|
| 138 |
|
| 139 |
+
# --- Offer Letter Generation --- #
|
| 140 |
+
def generate_offer_letter(template_file, candidate_name, role, start_date, hours):
|
| 141 |
+
"""Generates an offer letter from a template."""
|
| 142 |
+
try:
|
| 143 |
+
start_date = datetime.strptime(start_date, "%Y-%m-%d").strftime("%B %d, %Y")
|
| 144 |
+
except ValueError:
|
| 145 |
+
return "Invalid date format. Please use YYYY-MM-DD."
|
| 146 |
+
|
| 147 |
+
context = {
|
| 148 |
+
'candidate_name': candidate_name,
|
| 149 |
+
'role': role,
|
| 150 |
+
'start_date': start_date,
|
| 151 |
+
'hours': hours
|
| 152 |
+
}
|
| 153 |
+
|
| 154 |
+
doc = DocxTemplate(template_file)
|
| 155 |
+
doc.render(context)
|
| 156 |
+
|
| 157 |
+
offer_letter_path = f"{candidate_name.replace(' ', '_')}_offer_letter.docx"
|
| 158 |
+
doc.save(offer_letter_path)
|
| 159 |
+
|
| 160 |
+
return offer_letter_path
|
| 161 |
+
|
| 162 |
# --- Gradio Interface --- #
|
| 163 |
iface = gr.Interface(
|
| 164 |
fn=analyze_resume,
|
| 165 |
+
inputs=[
|
| 166 |
+
gr.File(label="Upload Resume (PDF/TXT)"),
|
| 167 |
+
gr.File(label="Upload Job Description (PDF/TXT)")
|
| 168 |
+
],
|
| 169 |
outputs=[
|
| 170 |
+
gr.Textbox(label="Similarity Score"),
|
| 171 |
+
gr.Textbox(label="Communication Response"),
|
| 172 |
+
gr.Textbox(label="Sentiment Analysis"),
|
| 173 |
+
gr.Textbox(label="Extracted Resume Skills"),
|
| 174 |
+
gr.Textbox(label="Extracted Job Description Skills"),
|
| 175 |
],
|
| 176 |
+
title="Resume and Job Description Analyzer",
|
| 177 |
+
description="This tool analyzes a resume against a job description to extract skills, calculate similarity, and generate communication responses."
|
| 178 |
)
|
| 179 |
|
| 180 |
+
iface.launch()
|
|
|