chore(config): refactor old mistral config (#1435)
Browse files* chore(config): refactor old mistral config
* chore: add link to colab on readme
- README.md +5 -0
- examples/mistral/Mistral-7b-example/README.md +0 -12
- examples/mistral/Mistral-7b-example/code.ipynb +0 -0
- examples/mistral/Mistral-7b-example/data.jsonl +0 -10
- examples/mistral/config.yml +0 -3
- examples/mistral/{Mistral-7b-example/config.yml → lora.yml} +27 -24
- examples/mistral/qlora.yml +0 -3
README.md
CHANGED
|
@@ -32,6 +32,7 @@ Features:
|
|
| 32 |
- [Bare Metal Cloud GPU](#bare-metal-cloud-gpu)
|
| 33 |
- [Windows](#windows)
|
| 34 |
- [Mac](#mac)
|
|
|
|
| 35 |
- [Launching on public clouds via SkyPilot](#launching-on-public-clouds-via-skypilot)
|
| 36 |
- [Dataset](#dataset)
|
| 37 |
- [How to Add Custom Prompts](#how-to-add-custom-prompts)
|
|
@@ -269,6 +270,10 @@ pip3 install -e '.'
|
|
| 269 |
```
|
| 270 |
More info: [mac.md](/docs/mac.qmd)
|
| 271 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 272 |
#### Launching on public clouds via SkyPilot
|
| 273 |
To launch on GPU instances (both on-demand and spot instances) on 7+ clouds (GCP, AWS, Azure, OCI, and more), you can use [SkyPilot](https://skypilot.readthedocs.io/en/latest/index.html):
|
| 274 |
|
|
|
|
| 32 |
- [Bare Metal Cloud GPU](#bare-metal-cloud-gpu)
|
| 33 |
- [Windows](#windows)
|
| 34 |
- [Mac](#mac)
|
| 35 |
+
- [Google Colab](#google-colab)
|
| 36 |
- [Launching on public clouds via SkyPilot](#launching-on-public-clouds-via-skypilot)
|
| 37 |
- [Dataset](#dataset)
|
| 38 |
- [How to Add Custom Prompts](#how-to-add-custom-prompts)
|
|
|
|
| 270 |
```
|
| 271 |
More info: [mac.md](/docs/mac.qmd)
|
| 272 |
|
| 273 |
+
#### Google Colab
|
| 274 |
+
|
| 275 |
+
Please use this example [notebook](examples/colab-notebooks/colab-axolotl-example.ipynb).
|
| 276 |
+
|
| 277 |
#### Launching on public clouds via SkyPilot
|
| 278 |
To launch on GPU instances (both on-demand and spot instances) on 7+ clouds (GCP, AWS, Azure, OCI, and more), you can use [SkyPilot](https://skypilot.readthedocs.io/en/latest/index.html):
|
| 279 |
|
examples/mistral/Mistral-7b-example/README.md
DELETED
|
@@ -1,12 +0,0 @@
|
|
| 1 |
-
# Description
|
| 2 |
-
This repository presents an in-depth guide for fine-tuning Mistral-7b or any other compatible model using Axolotl, tailored specifically for chatbot development. It streamlines the process of fine-tuning and uploading the enhanced model to HuggingFace 🤗, thereby serving as an invaluable tool for developers in the AI and chatbot domain.
|
| 3 |
-
|
| 4 |
-
**What’s Inside:**
|
| 5 |
-
|
| 6 |
-
Beginner-Friendly Instructions: Comprehensive steps to guide you through fine-tuning your chosen model, including details on the data structure (jsonl), configuration, and the code itself.
|
| 7 |
-
|
| 8 |
-
Hardware Utilized: For reference, the fine-tuning in this guide was performed using 4x NVIDIA GeForce RTX 3090 (rented 2.1.2-cuda12.1-cudnn8-devel).
|
| 9 |
-
|
| 10 |
-
**Uploading to HuggingFace 🤗:**
|
| 11 |
-
To upload your fine-tuned model to Hugging Face, include the following files:
|
| 12 |
-

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
examples/mistral/Mistral-7b-example/code.ipynb
DELETED
|
The diff for this file is too large to render.
See raw diff
|
|
|
examples/mistral/Mistral-7b-example/data.jsonl
DELETED
|
@@ -1,10 +0,0 @@
|
|
| 1 |
-
{"conversations": [{"from": "Customer", "value": "\"<Customer>: Who is the Founder of Apple\""}, {"from": "gpt", "value": "\"<Chatbot>: The founder of Apple is Steve Jobs\""}]}
|
| 2 |
-
{"conversations": [{"from": "Customer", "value": "\"<Customer>: What is the capital of France?\""}, {"from": "gpt", "value": "\"<Chatbot>: The capital of France is Paris.\""}]}
|
| 3 |
-
{"conversations": [{"from": "Customer", "value": "\"<Customer>: How far is the Moon from Earth?\""}, {"from": "gpt", "value": "\"<Chatbot>: The Moon is approximately 384,400 kilometers from Earth.\""}]}
|
| 4 |
-
{"conversations": [{"from": "Customer", "value": "\"<Customer>: What is the tallest mountain in the world?\""}, {"from": "gpt", "value": "\"<Chatbot>: The tallest mountain in the world is Mount Everest.\""}]}
|
| 5 |
-
{"conversations": [{"from": "Customer", "value": "\"<Customer>: Who wrote Romeo and Juliet?\""}, {"from": "gpt", "value": "\"<Chatbot>: Romeo and Juliet was written by William Shakespeare.\""}]}
|
| 6 |
-
{"conversations": [{"from": "Customer", "value": "\"<Customer>: What is the boiling point of water?\""}, {"from": "gpt", "value": "\"<Chatbot>: The boiling point of water is 100 degrees Celsius.\""}]}
|
| 7 |
-
{"conversations": [{"from": "Customer", "value": "\"<Customer>: When was the first man on the moon?\""}, {"from": "gpt", "value": "\"<Chatbot>: The first man landed on the moon in 1969.\""}]}
|
| 8 |
-
{"conversations": [{"from": "Customer", "value": "\"<Customer>: What is the largest ocean?\""}, {"from": "gpt", "value": "\"<Chatbot>: The largest ocean is the Pacific Ocean.\""}]}
|
| 9 |
-
{"conversations": [{"from": "Customer", "value": "\"<Customer>: Who invented the telephone?\""}, {"from": "gpt", "value": "\"<Chatbot>: The telephone was invented by Alexander Graham Bell.\""}]}
|
| 10 |
-
{"conversations": [{"from": "Customer", "value": "\"<Customer>: What is the formula for water?\""}, {"from": "gpt", "value": "\"<Chatbot>: The chemical formula for water is H2O.\""}]}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
examples/mistral/config.yml
CHANGED
|
@@ -56,6 +56,3 @@ weight_decay: 0.0
|
|
| 56 |
fsdp:
|
| 57 |
fsdp_config:
|
| 58 |
special_tokens:
|
| 59 |
-
bos_token: "<s>"
|
| 60 |
-
eos_token: "</s>"
|
| 61 |
-
unk_token: "<unk>"
|
|
|
|
| 56 |
fsdp:
|
| 57 |
fsdp_config:
|
| 58 |
special_tokens:
|
|
|
|
|
|
|
|
|
examples/mistral/{Mistral-7b-example/config.yml → lora.yml}
RENAMED
|
@@ -1,4 +1,3 @@
|
|
| 1 |
-
#Mistral-7b
|
| 2 |
base_model: mistralai/Mistral-7B-v0.1
|
| 3 |
model_type: MistralForCausalLM
|
| 4 |
tokenizer_type: LlamaTokenizer
|
|
@@ -8,26 +7,32 @@ load_in_4bit: false
|
|
| 8 |
strict: false
|
| 9 |
|
| 10 |
datasets:
|
| 11 |
-
- path:
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
val_set_size: 0.05
|
| 17 |
-
output_dir: ./out
|
| 18 |
|
| 19 |
-
#using lora for lower cost
|
| 20 |
adapter: lora
|
| 21 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 22 |
lora_alpha: 16
|
| 23 |
lora_dropout: 0.05
|
|
|
|
|
|
|
| 24 |
lora_target_modules:
|
|
|
|
|
|
|
|
|
|
| 25 |
- q_proj
|
| 26 |
- v_proj
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
sample_packing: false
|
| 30 |
-
pad_to_sequence_len: true
|
| 31 |
|
| 32 |
wandb_project:
|
| 33 |
wandb_entity:
|
|
@@ -35,18 +40,17 @@ wandb_watch:
|
|
| 35 |
wandb_name:
|
| 36 |
wandb_log_model:
|
| 37 |
|
| 38 |
-
|
| 39 |
-
gradient_accumulation_steps: 3
|
| 40 |
micro_batch_size: 2
|
| 41 |
-
num_epochs:
|
| 42 |
optimizer: adamw_bnb_8bit
|
| 43 |
lr_scheduler: cosine
|
| 44 |
learning_rate: 0.0002
|
| 45 |
|
| 46 |
train_on_inputs: false
|
| 47 |
group_by_length: false
|
| 48 |
-
bf16:
|
| 49 |
-
fp16:
|
| 50 |
tf32: false
|
| 51 |
|
| 52 |
gradient_checkpointing: true
|
|
@@ -57,18 +61,17 @@ logging_steps: 1
|
|
| 57 |
xformers_attention:
|
| 58 |
flash_attention: true
|
| 59 |
|
|
|
|
|
|
|
|
|
|
| 60 |
warmup_steps: 10
|
| 61 |
evals_per_epoch: 4
|
| 62 |
eval_table_size:
|
| 63 |
eval_max_new_tokens: 128
|
| 64 |
saves_per_epoch: 1
|
| 65 |
debug:
|
| 66 |
-
|
| 67 |
-
deepspeed: deepspeed_configs/zero1.json
|
| 68 |
weight_decay: 0.0
|
| 69 |
fsdp:
|
| 70 |
fsdp_config:
|
| 71 |
special_tokens:
|
| 72 |
-
bos_token: "<s>"
|
| 73 |
-
eos_token: "</s>"
|
| 74 |
-
unk_token: "<unk>"
|
|
|
|
|
|
|
| 1 |
base_model: mistralai/Mistral-7B-v0.1
|
| 2 |
model_type: MistralForCausalLM
|
| 3 |
tokenizer_type: LlamaTokenizer
|
|
|
|
| 7 |
strict: false
|
| 8 |
|
| 9 |
datasets:
|
| 10 |
+
- path: mhenrichsen/alpaca_2k_test
|
| 11 |
+
type: alpaca
|
| 12 |
+
dataset_prepared_path: last_run_prepared
|
| 13 |
+
val_set_size: 0.1
|
| 14 |
+
output_dir: ./lora-out
|
|
|
|
|
|
|
| 15 |
|
|
|
|
| 16 |
adapter: lora
|
| 17 |
+
lora_model_dir:
|
| 18 |
+
|
| 19 |
+
sequence_len: 8192
|
| 20 |
+
sample_packing: true
|
| 21 |
+
pad_to_sequence_len: true
|
| 22 |
+
|
| 23 |
+
lora_r: 32
|
| 24 |
lora_alpha: 16
|
| 25 |
lora_dropout: 0.05
|
| 26 |
+
lora_target_linear: true
|
| 27 |
+
lora_fan_in_fan_out:
|
| 28 |
lora_target_modules:
|
| 29 |
+
- gate_proj
|
| 30 |
+
- down_proj
|
| 31 |
+
- up_proj
|
| 32 |
- q_proj
|
| 33 |
- v_proj
|
| 34 |
+
- k_proj
|
| 35 |
+
- o_proj
|
|
|
|
|
|
|
| 36 |
|
| 37 |
wandb_project:
|
| 38 |
wandb_entity:
|
|
|
|
| 40 |
wandb_name:
|
| 41 |
wandb_log_model:
|
| 42 |
|
| 43 |
+
gradient_accumulation_steps: 4
|
|
|
|
| 44 |
micro_batch_size: 2
|
| 45 |
+
num_epochs: 1
|
| 46 |
optimizer: adamw_bnb_8bit
|
| 47 |
lr_scheduler: cosine
|
| 48 |
learning_rate: 0.0002
|
| 49 |
|
| 50 |
train_on_inputs: false
|
| 51 |
group_by_length: false
|
| 52 |
+
bf16: auto
|
| 53 |
+
fp16:
|
| 54 |
tf32: false
|
| 55 |
|
| 56 |
gradient_checkpointing: true
|
|
|
|
| 61 |
xformers_attention:
|
| 62 |
flash_attention: true
|
| 63 |
|
| 64 |
+
loss_watchdog_threshold: 5.0
|
| 65 |
+
loss_watchdog_patience: 3
|
| 66 |
+
|
| 67 |
warmup_steps: 10
|
| 68 |
evals_per_epoch: 4
|
| 69 |
eval_table_size:
|
| 70 |
eval_max_new_tokens: 128
|
| 71 |
saves_per_epoch: 1
|
| 72 |
debug:
|
| 73 |
+
deepspeed:
|
|
|
|
| 74 |
weight_decay: 0.0
|
| 75 |
fsdp:
|
| 76 |
fsdp_config:
|
| 77 |
special_tokens:
|
|
|
|
|
|
|
|
|
examples/mistral/qlora.yml
CHANGED
|
@@ -75,6 +75,3 @@ weight_decay: 0.0
|
|
| 75 |
fsdp:
|
| 76 |
fsdp_config:
|
| 77 |
special_tokens:
|
| 78 |
-
bos_token: "<s>"
|
| 79 |
-
eos_token: "</s>"
|
| 80 |
-
unk_token: "<unk>"
|
|
|
|
| 75 |
fsdp:
|
| 76 |
fsdp_config:
|
| 77 |
special_tokens:
|
|
|
|
|
|
|
|
|