add streaming dataset support for pretraining datasets
Browse files- README.md +2 -0
- scripts/finetune.py +3 -20
- src/axolotl/utils/data.py +112 -28
- src/axolotl/utils/validation.py +5 -0
- tests/test_validation.py +51 -0
README.md
CHANGED
|
@@ -410,6 +410,8 @@ optimizer:
|
|
| 410 |
# specify weight decay
|
| 411 |
weight_decay:
|
| 412 |
|
|
|
|
|
|
|
| 413 |
# whether to use xformers attention patch https://github.com/facebookresearch/xformers:
|
| 414 |
xformers_attention:
|
| 415 |
# whether to use flash attention patch https://github.com/HazyResearch/flash-attention:
|
|
|
|
| 410 |
# specify weight decay
|
| 411 |
weight_decay:
|
| 412 |
|
| 413 |
+
# whether to bettertransformers
|
| 414 |
+
flash_optimum:
|
| 415 |
# whether to use xformers attention patch https://github.com/facebookresearch/xformers:
|
| 416 |
xformers_attention:
|
| 417 |
# whether to use flash attention patch https://github.com/HazyResearch/flash-attention:
|
scripts/finetune.py
CHANGED
|
@@ -14,7 +14,6 @@ import torch
|
|
| 14 |
import yaml
|
| 15 |
|
| 16 |
# add src to the pythonpath so we don't need to pip install this
|
| 17 |
-
from datasets import Dataset
|
| 18 |
from optimum.bettertransformer import BetterTransformer
|
| 19 |
from transformers import GenerationConfig, TextStreamer
|
| 20 |
|
|
@@ -208,14 +207,11 @@ def train(
|
|
| 208 |
tokenizer, cfg, DEFAULT_DATASET_PREPARED_PATH
|
| 209 |
)
|
| 210 |
else:
|
| 211 |
-
if cfg.pretraining_dataset is True:
|
| 212 |
-
pretraining_dataset = "togethercomputer/RedPajama-Data-1T"
|
| 213 |
-
else:
|
| 214 |
-
pretraining_dataset = cfg.pretraining_dataset
|
| 215 |
train_dataset = load_pretraining_dataset(
|
| 216 |
-
pretraining_dataset, tokenizer, max_tokens=cfg.sequence_len
|
| 217 |
)
|
| 218 |
-
|
|
|
|
| 219 |
eval_dataset = None
|
| 220 |
|
| 221 |
if cfg.debug or "debug" in kwargs:
|
|
@@ -262,19 +258,6 @@ def train(
|
|
| 262 |
model.save_pretrained(cfg.output_dir)
|
| 263 |
return
|
| 264 |
|
| 265 |
-
if cfg.debug:
|
| 266 |
-
logging.info("check_dataset_labels...")
|
| 267 |
-
check_dataset_labels(
|
| 268 |
-
train_dataset.select(
|
| 269 |
-
[random.randrange(0, len(train_dataset) - 1) for i in range(5)] # nosec
|
| 270 |
-
),
|
| 271 |
-
tokenizer,
|
| 272 |
-
)
|
| 273 |
-
|
| 274 |
-
if prepare_ds_only:
|
| 275 |
-
logging.info("Finished preparing dataset. Exiting...")
|
| 276 |
-
return
|
| 277 |
-
|
| 278 |
model.train()
|
| 279 |
|
| 280 |
trainer = setup_trainer(cfg, train_dataset, eval_dataset, model, tokenizer)
|
|
|
|
| 14 |
import yaml
|
| 15 |
|
| 16 |
# add src to the pythonpath so we don't need to pip install this
|
|
|
|
| 17 |
from optimum.bettertransformer import BetterTransformer
|
| 18 |
from transformers import GenerationConfig, TextStreamer
|
| 19 |
|
|
|
|
| 207 |
tokenizer, cfg, DEFAULT_DATASET_PREPARED_PATH
|
| 208 |
)
|
| 209 |
else:
|
|
|
|
|
|
|
|
|
|
|
|
|
| 210 |
train_dataset = load_pretraining_dataset(
|
| 211 |
+
cfg.pretraining_dataset, tokenizer, max_tokens=cfg.sequence_len
|
| 212 |
)
|
| 213 |
+
# https://discuss.huggingface.co/t/how-to-use-huggingface-trainer-streaming-datasets-without-wrapping-it-with-torchdatas-iterablewrapper/25230
|
| 214 |
+
train_dataset = train_dataset.with_format("torch")
|
| 215 |
eval_dataset = None
|
| 216 |
|
| 217 |
if cfg.debug or "debug" in kwargs:
|
|
|
|
| 258 |
model.save_pretrained(cfg.output_dir)
|
| 259 |
return
|
| 260 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 261 |
model.train()
|
| 262 |
|
| 263 |
trainer = setup_trainer(cfg, train_dataset, eval_dataset, model, tokenizer)
|
src/axolotl/utils/data.py
CHANGED
|
@@ -1,12 +1,12 @@
|
|
| 1 |
"""Module containing data utilities"""
|
| 2 |
-
|
| 3 |
import logging
|
| 4 |
from hashlib import md5
|
| 5 |
from pathlib import Path
|
| 6 |
from typing import List, Tuple, Union
|
| 7 |
|
| 8 |
import torch
|
| 9 |
-
from datasets import Dataset, DatasetDict,
|
| 10 |
from huggingface_hub import hf_hub_download
|
| 11 |
from transformers import PreTrainedTokenizerBase
|
| 12 |
|
|
@@ -399,32 +399,116 @@ def load_prepare_datasets(
|
|
| 399 |
return train_dataset, eval_dataset
|
| 400 |
|
| 401 |
|
| 402 |
-
|
| 403 |
-
|
| 404 |
-
|
| 405 |
-
|
| 406 |
-
|
| 407 |
-
|
| 408 |
-
|
| 409 |
-
|
| 410 |
-
|
| 411 |
-
|
| 412 |
-
|
| 413 |
-
|
| 414 |
-
|
| 415 |
-
|
| 416 |
-
|
| 417 |
-
|
| 418 |
-
|
| 419 |
-
|
| 420 |
-
|
| 421 |
-
|
| 422 |
-
|
| 423 |
-
|
| 424 |
-
|
| 425 |
-
|
| 426 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 427 |
|
| 428 |
|
| 429 |
def load_pretraining_dataset(path, tokenizer, max_tokens=2048):
|
| 430 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
"""Module containing data utilities"""
|
| 2 |
+
import functools
|
| 3 |
import logging
|
| 4 |
from hashlib import md5
|
| 5 |
from pathlib import Path
|
| 6 |
from typing import List, Tuple, Union
|
| 7 |
|
| 8 |
import torch
|
| 9 |
+
from datasets import Dataset, DatasetDict, load_dataset, load_from_disk
|
| 10 |
from huggingface_hub import hf_hub_download
|
| 11 |
from transformers import PreTrainedTokenizerBase
|
| 12 |
|
|
|
|
| 399 |
return train_dataset, eval_dataset
|
| 400 |
|
| 401 |
|
| 402 |
+
def encode_pretraining(tokenizer, max_tokens, examples):
|
| 403 |
+
res = tokenizer(
|
| 404 |
+
examples["text"],
|
| 405 |
+
truncation=True,
|
| 406 |
+
max_length=max_tokens - 2,
|
| 407 |
+
add_special_tokens=True,
|
| 408 |
+
)
|
| 409 |
+
# Convert to PyTorch tensors
|
| 410 |
+
input_ids = [torch.tensor(seq) for seq in res["input_ids"]]
|
| 411 |
+
attention_mask = [torch.tensor(seq) for seq in res["attention_mask"]]
|
| 412 |
+
new_input_ids = []
|
| 413 |
+
new_attention_mask = []
|
| 414 |
+
# Append EOS and PAD tokens to input_ids, and correct attention_mask
|
| 415 |
+
for i, _ in enumerate(input_ids):
|
| 416 |
+
input_ids[i] = torch.cat(
|
| 417 |
+
(
|
| 418 |
+
input_ids[i],
|
| 419 |
+
torch.tensor([tokenizer.eos_token_id, tokenizer.pad_token_id]),
|
| 420 |
+
),
|
| 421 |
+
dim=0,
|
| 422 |
+
)
|
| 423 |
+
attention_mask[i] = torch.cat((attention_mask[i], torch.tensor([1, 0])), dim=0)
|
| 424 |
+
|
| 425 |
+
# Concatenate tokens so that their lengths are less than max_tokens
|
| 426 |
+
buffer_input_ids = torch.tensor([], dtype=torch.long)
|
| 427 |
+
buffer_attention_mask = torch.tensor([], dtype=torch.long)
|
| 428 |
+
|
| 429 |
+
for ids, mask in zip(input_ids, attention_mask):
|
| 430 |
+
if buffer_input_ids.numel() == max_tokens:
|
| 431 |
+
new_input_ids.append(buffer_input_ids)
|
| 432 |
+
new_attention_mask.append(buffer_attention_mask)
|
| 433 |
+
buffer_input_ids = torch.tensor([], dtype=torch.long)
|
| 434 |
+
buffer_attention_mask = torch.tensor([], dtype=torch.long)
|
| 435 |
+
buffer_input_ids = torch.cat((buffer_input_ids, ids), dim=0)
|
| 436 |
+
buffer_attention_mask = torch.cat((buffer_attention_mask, mask), dim=0)
|
| 437 |
+
elif buffer_input_ids.numel() + ids.numel() <= max_tokens:
|
| 438 |
+
buffer_input_ids = torch.cat((buffer_input_ids, ids), dim=0)
|
| 439 |
+
buffer_attention_mask = torch.cat((buffer_attention_mask, mask), dim=0)
|
| 440 |
+
else:
|
| 441 |
+
buffer_input_ids = torch.cat(
|
| 442 |
+
(
|
| 443 |
+
buffer_input_ids,
|
| 444 |
+
torch.full(
|
| 445 |
+
(max_tokens - buffer_input_ids.numel(),),
|
| 446 |
+
tokenizer.pad_token_id,
|
| 447 |
+
dtype=torch.long,
|
| 448 |
+
),
|
| 449 |
+
),
|
| 450 |
+
dim=0,
|
| 451 |
+
)
|
| 452 |
+
buffer_attention_mask = torch.cat(
|
| 453 |
+
(
|
| 454 |
+
buffer_attention_mask,
|
| 455 |
+
torch.full(
|
| 456 |
+
(max_tokens - buffer_attention_mask.numel(),),
|
| 457 |
+
0,
|
| 458 |
+
dtype=torch.long,
|
| 459 |
+
),
|
| 460 |
+
),
|
| 461 |
+
dim=0,
|
| 462 |
+
)
|
| 463 |
+
new_input_ids.append(buffer_input_ids)
|
| 464 |
+
new_attention_mask.append(buffer_attention_mask)
|
| 465 |
+
buffer_input_ids = torch.tensor([], dtype=torch.long)
|
| 466 |
+
buffer_attention_mask = torch.tensor([], dtype=torch.long)
|
| 467 |
+
|
| 468 |
+
buffer_input_ids = torch.cat((buffer_input_ids, ids), dim=0)
|
| 469 |
+
buffer_attention_mask = torch.cat((buffer_attention_mask, mask), dim=0)
|
| 470 |
+
|
| 471 |
+
if buffer_input_ids.numel() > 0: # for any leftover tokens
|
| 472 |
+
while buffer_input_ids.numel() < max_tokens: # make all sequences equal in size
|
| 473 |
+
buffer_input_ids = torch.cat(
|
| 474 |
+
(
|
| 475 |
+
buffer_input_ids,
|
| 476 |
+
torch.full(
|
| 477 |
+
(max_tokens - buffer_input_ids.numel(),),
|
| 478 |
+
tokenizer.pad_token_id,
|
| 479 |
+
dtype=torch.long,
|
| 480 |
+
),
|
| 481 |
+
),
|
| 482 |
+
dim=0,
|
| 483 |
+
)
|
| 484 |
+
buffer_attention_mask = torch.cat(
|
| 485 |
+
(
|
| 486 |
+
buffer_attention_mask,
|
| 487 |
+
torch.full(
|
| 488 |
+
(max_tokens - buffer_attention_mask.numel(),),
|
| 489 |
+
0,
|
| 490 |
+
dtype=torch.long,
|
| 491 |
+
),
|
| 492 |
+
),
|
| 493 |
+
dim=0,
|
| 494 |
+
)
|
| 495 |
+
new_input_ids.append(buffer_input_ids)
|
| 496 |
+
new_attention_mask.append(buffer_attention_mask)
|
| 497 |
+
|
| 498 |
+
ret = {
|
| 499 |
+
"input_ids": [seq.tolist() for seq in new_input_ids],
|
| 500 |
+
"labels": [seq.tolist() for seq in new_input_ids],
|
| 501 |
+
"attention_mask": [seq.tolist() for seq in new_attention_mask],
|
| 502 |
+
}
|
| 503 |
+
|
| 504 |
+
logging.debug(len(ret["input_ids"]))
|
| 505 |
+
return ret
|
| 506 |
|
| 507 |
|
| 508 |
def load_pretraining_dataset(path, tokenizer, max_tokens=2048):
|
| 509 |
+
encode = functools.partial(encode_pretraining, tokenizer, max_tokens)
|
| 510 |
+
dataset = load_dataset(path, streaming=True, split="train")
|
| 511 |
+
dataset = dataset.shuffle(seed=42, buffer_size=10_000)
|
| 512 |
+
# TODO dynamically figure out which columns/features to remove
|
| 513 |
+
dataset = dataset.map(encode, batched=True, remove_columns=["text", "meta"])
|
| 514 |
+
return dataset
|
src/axolotl/utils/validation.py
CHANGED
|
@@ -77,6 +77,11 @@ def validate_config(cfg):
|
|
| 77 |
f"flash_optimum for BetterTransformers may not be used with {torch.__version__}"
|
| 78 |
)
|
| 79 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 80 |
# TODO
|
| 81 |
# MPT 7b
|
| 82 |
# https://github.com/facebookresearch/bitsandbytes/issues/25
|
|
|
|
| 77 |
f"flash_optimum for BetterTransformers may not be used with {torch.__version__}"
|
| 78 |
)
|
| 79 |
|
| 80 |
+
if cfg.pretraining_dataset and cfg.group_by_length:
|
| 81 |
+
logging.warning(
|
| 82 |
+
"You probably want to disable group_by_length as it will force a streamed dataset to download completely."
|
| 83 |
+
)
|
| 84 |
+
|
| 85 |
# TODO
|
| 86 |
# MPT 7b
|
| 87 |
# https://github.com/facebookresearch/bitsandbytes/issues/25
|
tests/test_validation.py
CHANGED
|
@@ -198,3 +198,54 @@ class ValidationTest(unittest.TestCase):
|
|
| 198 |
)
|
| 199 |
|
| 200 |
validate_config(cfg)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 198 |
)
|
| 199 |
|
| 200 |
validate_config(cfg)
|
| 201 |
+
|
| 202 |
+
def test_flash_optimum(self):
|
| 203 |
+
cfg = DictDefault(
|
| 204 |
+
{
|
| 205 |
+
"flash_optimum": True,
|
| 206 |
+
"adapter": "lora",
|
| 207 |
+
}
|
| 208 |
+
)
|
| 209 |
+
|
| 210 |
+
with self._caplog.at_level(logging.WARNING):
|
| 211 |
+
validate_config(cfg)
|
| 212 |
+
assert any(
|
| 213 |
+
"BetterTransformers probably doesn't work with PEFT adapters"
|
| 214 |
+
in record.message
|
| 215 |
+
for record in self._caplog.records
|
| 216 |
+
)
|
| 217 |
+
|
| 218 |
+
cfg = DictDefault(
|
| 219 |
+
{
|
| 220 |
+
"flash_optimum": True,
|
| 221 |
+
}
|
| 222 |
+
)
|
| 223 |
+
|
| 224 |
+
with self._caplog.at_level(logging.WARNING):
|
| 225 |
+
validate_config(cfg)
|
| 226 |
+
assert any(
|
| 227 |
+
"probably set bfloat16 or float16" in record.message
|
| 228 |
+
for record in self._caplog.records
|
| 229 |
+
)
|
| 230 |
+
|
| 231 |
+
cfg = DictDefault(
|
| 232 |
+
{
|
| 233 |
+
"flash_optimum": True,
|
| 234 |
+
"fp16": True,
|
| 235 |
+
}
|
| 236 |
+
)
|
| 237 |
+
regex_exp = r".*AMP is not supported.*"
|
| 238 |
+
|
| 239 |
+
with pytest.raises(ValueError, match=regex_exp):
|
| 240 |
+
validate_config(cfg)
|
| 241 |
+
|
| 242 |
+
cfg = DictDefault(
|
| 243 |
+
{
|
| 244 |
+
"flash_optimum": True,
|
| 245 |
+
"bf16": True,
|
| 246 |
+
}
|
| 247 |
+
)
|
| 248 |
+
regex_exp = r".*AMP is not supported.*"
|
| 249 |
+
|
| 250 |
+
with pytest.raises(ValueError, match=regex_exp):
|
| 251 |
+
validate_config(cfg)
|