WIP for axolotl trainer
Browse files- .editorconfig +14 -0
- .gitignore +3 -0
- README.md +8 -1
- configs/pythia_1_2B_alpaca.yml +37 -0
- data/README.md +8 -0
- data/raw/.gitignore +1 -0
- pyproject.toml +3 -0
- requirements.txt +6 -0
- scripts/alpaca_json_to_jsonl.py +36 -0
- scripts/finetune.py +129 -0
- setup.cfg +23 -0
- src/axolotl/__init__.py +0 -0
- src/axolotl/convert.py +50 -0
- src/axolotl/datasets.py +86 -0
- src/axolotl/prompt_tokenizers.py +83 -0
- src/axolotl/prompters.py +10 -0
    	
        .editorconfig
    ADDED
    
    | @@ -0,0 +1,14 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            root = true
         | 
| 2 | 
            +
             | 
| 3 | 
            +
            [*]
         | 
| 4 | 
            +
            end_of_line = lf
         | 
| 5 | 
            +
            insert_final_newline = true
         | 
| 6 | 
            +
            trim_trailing_whitespace = true
         | 
| 7 | 
            +
             | 
| 8 | 
            +
            [*.py]
         | 
| 9 | 
            +
            indent_style = space
         | 
| 10 | 
            +
            indent_size = 4
         | 
| 11 | 
            +
             | 
| 12 | 
            +
            [**.yml]
         | 
| 13 | 
            +
            indent_style = space
         | 
| 14 | 
            +
            indent_size = 2
         | 
    	
        .gitignore
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            **/axolotl.egg-info
         | 
| 2 | 
            +
            **/__pycache__
         | 
| 3 | 
            +
            .idea
         | 
    	
        README.md
    CHANGED
    
    | @@ -1,6 +1,13 @@ | |
| 1 | 
             
            # Axolotl
         | 
| 2 |  | 
| 3 | 
            -
             | 
| 4 |  | 
| 5 |  | 
|  | |
| 6 |  | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
             
            # Axolotl
         | 
| 2 |  | 
| 3 | 
            +
            #### You know you're going to axolotl questions
         | 
| 4 |  | 
| 5 |  | 
| 6 | 
            +
            ### Converting JSON data files to JSONL
         | 
| 7 |  | 
| 8 | 
            +
            ```shell
         | 
| 9 | 
            +
            python3 ./scripts/alpaca_json_to_jsonl.py --input data/alpaca_data_gpt4.json > data/alpaca_data_gpt4.jsonl
         | 
| 10 | 
            +
            python3 ./scripts/alpaca_json_to_jsonl.py --input data/raw/vicuna_cleaned.json > data/vicuna_cleaned.jsonl
         | 
| 11 | 
            +
            python3 ./scripts/alpaca_json_to_jsonl.py --input data/raw/roleplay-similarity_0.6-instruct-dataset.json > data/roleplay-similarity_0.6-instruct-dataset.jsonl
         | 
| 12 | 
            +
            python3 ./scripts/alpaca_json_to_jsonl.py --input data/raw/gpt4-instruct-similarity-0.6-dataset.json > data/gpt4-instruct-similarity-0.6-dataset.jsonl
         | 
| 13 | 
            +
            ```
         | 
    	
        configs/pythia_1_2B_alpaca.yml
    ADDED
    
    | @@ -0,0 +1,37 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            base_model: EleutherAI/pythia-1.4b-deduped
         | 
| 2 | 
            +
            model_type: GPTNeoXForCausalLM
         | 
| 3 | 
            +
            tokenizer_type: AutoTokenizer
         | 
| 4 | 
            +
            load_in_8bit: true
         | 
| 5 | 
            +
            datasets:
         | 
| 6 | 
            +
              - path: ./data/alpaca_data_gpt4.jsonl
         | 
| 7 | 
            +
                type: alpaca
         | 
| 8 | 
            +
              - path: ./data/vicuna_cleaned.jsonl
         | 
| 9 | 
            +
                type: sharegpt
         | 
| 10 | 
            +
              - path: ./data/gpt4-instruct-similarity-0.6-dataset.jsonl
         | 
| 11 | 
            +
                type: gpteacher
         | 
| 12 | 
            +
              - path: ./data/roleplay-similarity_0.6-instruct-dataset.jsonl
         | 
| 13 | 
            +
                type: gpteacher
         | 
| 14 | 
            +
            val_set_size: 0.05
         | 
| 15 | 
            +
            adapter: lora
         | 
| 16 | 
            +
            sequence_len: 2048
         | 
| 17 | 
            +
            lora_r: 16
         | 
| 18 | 
            +
            lora_alpha: 32
         | 
| 19 | 
            +
            lora_dropout: 0.05
         | 
| 20 | 
            +
            lora_target_modules:
         | 
| 21 | 
            +
              - q_proj
         | 
| 22 | 
            +
              - v_proj
         | 
| 23 | 
            +
            wandb_project:
         | 
| 24 | 
            +
            wandb_watch:
         | 
| 25 | 
            +
            wandb:run_name:
         | 
| 26 | 
            +
            wandb_log_model: checkpoint
         | 
| 27 | 
            +
            output_dir: ./lora-alpaca
         | 
| 28 | 
            +
            batch_size: 128
         | 
| 29 | 
            +
            micro_batch_size: 8
         | 
| 30 | 
            +
            num_epochs: 5
         | 
| 31 | 
            +
            learning_rate: 0.0003
         | 
| 32 | 
            +
            train_on_inputs: false
         | 
| 33 | 
            +
            bf16: True
         | 
| 34 | 
            +
            fp16: True
         | 
| 35 | 
            +
            resume_from_checkpoint:
         | 
| 36 | 
            +
            local_rank:
         | 
| 37 | 
            +
            deepspeed:
         | 
    	
        data/README.md
    ADDED
    
    | @@ -0,0 +1,8 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
             | 
| 2 | 
            +
             | 
| 3 | 
            +
            ```shell
         | 
| 4 | 
            +
            curl https://raw.githubusercontent.com/tloen/alpaca-lora/main/alpaca_data_gpt4.json -o raw/alpaca_data_gpt4.json
         | 
| 5 | 
            +
            curl https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered/resolve/main/ShareGPT_V3_unfiltered_cleaned_split.json -L -o raw/vicuna_cleaned.json
         | 
| 6 | 
            +
            curl https://github.com/teknium1/GPTeacher/blob/main/Instruct/gpt4-instruct-similarity-0.6-dataset.json?raw=true -L -o raw/gpt4-instruct-similarity-0.6-dataset.json
         | 
| 7 | 
            +
            curl https://github.com/teknium1/GPTeacher/blob/main/Roleplay/roleplay-similarity_0.6-instruct-dataset.json?raw=true -L -o raw/roleplay-similarity_0.6-instruct-dataset.json
         | 
| 8 | 
            +
            ```
         | 
    	
        data/raw/.gitignore
    ADDED
    
    | @@ -0,0 +1 @@ | |
|  | 
|  | |
| 1 | 
            +
            **
         | 
    	
        pyproject.toml
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            [build-system]
         | 
| 2 | 
            +
            requires = ["setuptools", "wheel"]
         | 
| 3 | 
            +
            build-backend = "setuptools.build_meta"
         | 
    	
        requirements.txt
    ADDED
    
    | @@ -0,0 +1,6 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            git+https://github.com/huggingface/transformers.git
         | 
| 2 | 
            +
            git+https://github.com/huggingface/peft.git
         | 
| 3 | 
            +
            attrdict
         | 
| 4 | 
            +
            fire
         | 
| 5 | 
            +
            PyYAML==6.0
         | 
| 6 | 
            +
            black
         | 
    	
        scripts/alpaca_json_to_jsonl.py
    ADDED
    
    | @@ -0,0 +1,36 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            import os
         | 
| 2 | 
            +
            import sys
         | 
| 3 | 
            +
            from pathlib import Path
         | 
| 4 | 
            +
             | 
| 5 | 
            +
            import fire
         | 
| 6 | 
            +
            from typing import Optional
         | 
| 7 | 
            +
             | 
| 8 | 
            +
            # add src to the pythonpath so we don't need to pip install this
         | 
| 9 | 
            +
            project_root = os.path.abspath(os.path.join(os.path.dirname(__file__), '..'))
         | 
| 10 | 
            +
            src_dir = os.path.join(project_root, 'src')
         | 
| 11 | 
            +
            sys.path.insert(0, src_dir)
         | 
| 12 | 
            +
             | 
| 13 | 
            +
            from axolotl.convert import *
         | 
| 14 | 
            +
             | 
| 15 | 
            +
            def main(
         | 
| 16 | 
            +
                input: Path,
         | 
| 17 | 
            +
                output: Optional[Path] = None,
         | 
| 18 | 
            +
                to_stdout: Optional[bool] = False,
         | 
| 19 | 
            +
            ):
         | 
| 20 | 
            +
                file_reader = FileReader()
         | 
| 21 | 
            +
                if to_stdout or output is None:
         | 
| 22 | 
            +
                    writer = StdoutWriter()
         | 
| 23 | 
            +
                else:
         | 
| 24 | 
            +
                    writer = FileWriter(output)
         | 
| 25 | 
            +
                json_parser = JsonParser()
         | 
| 26 | 
            +
                jsonl_serializer = JsonlSerializer()
         | 
| 27 | 
            +
             | 
| 28 | 
            +
                converter = JsonToJsonlConverter(
         | 
| 29 | 
            +
                    file_reader, writer, json_parser, jsonl_serializer
         | 
| 30 | 
            +
                )
         | 
| 31 | 
            +
             | 
| 32 | 
            +
                converter.convert(input, output)
         | 
| 33 | 
            +
             | 
| 34 | 
            +
             | 
| 35 | 
            +
            if __name__ == "__main__":
         | 
| 36 | 
            +
                fire.Fire(main)
         | 
    	
        scripts/finetune.py
    ADDED
    
    | @@ -0,0 +1,129 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            import os
         | 
| 2 | 
            +
            import sys
         | 
| 3 | 
            +
            from pathlib import Path
         | 
| 4 | 
            +
             | 
| 5 | 
            +
            import fire
         | 
| 6 | 
            +
            import torch
         | 
| 7 | 
            +
            import transformers
         | 
| 8 | 
            +
            import yaml
         | 
| 9 | 
            +
            from attrdict import AttrDict
         | 
| 10 | 
            +
            from datasets import load_dataset, IterableDataset
         | 
| 11 | 
            +
            from peft import (
         | 
| 12 | 
            +
                LoraConfig,
         | 
| 13 | 
            +
                get_peft_model,
         | 
| 14 | 
            +
                prepare_model_for_int8_training,
         | 
| 15 | 
            +
            )
         | 
| 16 | 
            +
            from transformers import AutoModelForCausalLM, AutoTokenizer
         | 
| 17 | 
            +
             | 
| 18 | 
            +
            # add src to the pythonpath so we don't need to pip install this
         | 
| 19 | 
            +
            project_root = os.path.abspath(os.path.join(os.path.dirname(__file__), '..'))
         | 
| 20 | 
            +
            src_dir = os.path.join(project_root, 'src')
         | 
| 21 | 
            +
            sys.path.insert(0, src_dir)
         | 
| 22 | 
            +
             | 
| 23 | 
            +
            from axolotl.datasets import TokenizedPromptDataset
         | 
| 24 | 
            +
            from axolotl.prompt_tokenizers import AlpacaPromptTokenizingStrategy, ShareGPTPromptTokenizingStrategy, \
         | 
| 25 | 
            +
                LLAMA_DEFAULT_PAD_TOKEN, GPTeacherPromptTokenizingStrategy
         | 
| 26 | 
            +
            from axolotl.prompters import AlpacaPrompter, GPTeacherPrompter, ShareGPTPrompter
         | 
| 27 | 
            +
             | 
| 28 | 
            +
            def setup_wandb_env_vars(cfg):
         | 
| 29 | 
            +
                if len(cfg.wandb_project) > 0:
         | 
| 30 | 
            +
                    os.environ["WANDB_PROJECT"] = cfg.wandb_project
         | 
| 31 | 
            +
                    cfg.use_wandb = True
         | 
| 32 | 
            +
                    if len(cfg.wandb_watch) > 0:
         | 
| 33 | 
            +
                        os.environ["WANDB_WATCH"] = cfg.wandb_watch
         | 
| 34 | 
            +
                    if len(cfg.wandb_log_model) > 0:
         | 
| 35 | 
            +
                        os.environ["WANDB_LOG_MODEL"] = cfg.wandb_log_model
         | 
| 36 | 
            +
             | 
| 37 | 
            +
             | 
| 38 | 
            +
            def load_model(base_model, model_type, tokenizer_type, cfg, adapter="lora"):
         | 
| 39 | 
            +
                if adapter != "lora":
         | 
| 40 | 
            +
                    raise NotImplementedError(f"{adapter} peft adapter not available")
         | 
| 41 | 
            +
                try:
         | 
| 42 | 
            +
                    model = getattr(transformers, model_type).from_pretrained(
         | 
| 43 | 
            +
                        base_model,
         | 
| 44 | 
            +
                        load_in_8bit=cfg.load_in_8bit,
         | 
| 45 | 
            +
                        torch_dtype=torch.float16 if cfg.load_in_8bit else torch.float32,
         | 
| 46 | 
            +
                        device_map=cfg.device_map,
         | 
| 47 | 
            +
                    )
         | 
| 48 | 
            +
                except:
         | 
| 49 | 
            +
                    model = AutoModelForCausalLM.from_pretrained(
         | 
| 50 | 
            +
                        base_model,
         | 
| 51 | 
            +
                        load_in_8bit=cfg.load_in_8bit,
         | 
| 52 | 
            +
                        torch_dtype=torch.float16 if cfg.load_in_8bit else torch.float32,
         | 
| 53 | 
            +
                        device_map=cfg.device_map,
         | 
| 54 | 
            +
                    )
         | 
| 55 | 
            +
             | 
| 56 | 
            +
                try:
         | 
| 57 | 
            +
                    tokenizer = getattr(transformers, tokenizer_type).from_pretrained(model)
         | 
| 58 | 
            +
                except:
         | 
| 59 | 
            +
                    tokenizer = AutoTokenizer.from_pretrained(base_model)
         | 
| 60 | 
            +
             | 
| 61 | 
            +
                if tokenizer.__class__.__name__ == "LlamaTokenizer":
         | 
| 62 | 
            +
                    tokenizer.pad_token = LLAMA_DEFAULT_PAD_TOKEN
         | 
| 63 | 
            +
             | 
| 64 | 
            +
                if cfg.load_in_8bit:
         | 
| 65 | 
            +
                    model = prepare_model_for_int8_training(model)
         | 
| 66 | 
            +
             | 
| 67 | 
            +
                lora_config = LoraConfig(
         | 
| 68 | 
            +
                    r=cfg.lora_r,
         | 
| 69 | 
            +
                    lora_alpha=cfg.lora_alpha,
         | 
| 70 | 
            +
                    target_modules=cfg.lora_target_modules,
         | 
| 71 | 
            +
                    lora_dropout=cfg.lora_dropout,
         | 
| 72 | 
            +
                    bias="none",
         | 
| 73 | 
            +
                    task_type="CAUSAL_LM",
         | 
| 74 | 
            +
                )
         | 
| 75 | 
            +
                model = get_peft_model(model, lora_config)
         | 
| 76 | 
            +
                if cfg.ddp:
         | 
| 77 | 
            +
                    model.to(f"cuda:{cfg.local_rank}")
         | 
| 78 | 
            +
             | 
| 79 | 
            +
                # TODO resume_from_checkpoint handling
         | 
| 80 | 
            +
             | 
| 81 | 
            +
                model.print_trainable_parameters()
         | 
| 82 | 
            +
                return model, tokenizer
         | 
| 83 | 
            +
             | 
| 84 | 
            +
             | 
| 85 | 
            +
            def train(
         | 
| 86 | 
            +
                config: Path = Path('configs/pythia_1_2B_alpaca.yml'),
         | 
| 87 | 
            +
                **kwargs,
         | 
| 88 | 
            +
            ):
         | 
| 89 | 
            +
                # load the config from the yaml file
         | 
| 90 | 
            +
                with open(config, 'r') as f:
         | 
| 91 | 
            +
                    cfg: AttrDict = AttrDict(yaml.load(f))
         | 
| 92 | 
            +
                # if there are any options passed in the cli, if it is something that seems valid from the yaml,
         | 
| 93 | 
            +
                # then overwrite the value
         | 
| 94 | 
            +
                for k, v in enumerate(kwargs):
         | 
| 95 | 
            +
                    if k in cfg:
         | 
| 96 | 
            +
                        cfg.k = v
         | 
| 97 | 
            +
             | 
| 98 | 
            +
                # setup some derived config / hyperparams
         | 
| 99 | 
            +
                cfg.gradient_accumulation_steps = cfg.batch_size // cfg.micro_batch_size
         | 
| 100 | 
            +
                cfg.device_map = "auto"
         | 
| 101 | 
            +
                cfg.world_size = int(os.environ.get("WORLD_SIZE", 1))
         | 
| 102 | 
            +
                cfg.local_rank = int(os.environ.get("LOCAL_RANK", 0))
         | 
| 103 | 
            +
                cfg.ddp = cfg.world_size != 1
         | 
| 104 | 
            +
                if cfg.ddp:
         | 
| 105 | 
            +
                    cfg.device_map = {"": int(os.environ.get("LOCAL_RANK", 0))}
         | 
| 106 | 
            +
                    cfg.gradient_accumulation_steps = cfg.gradient_accumulation_steps // cfg.world_size
         | 
| 107 | 
            +
                setup_wandb_env_vars(cfg)
         | 
| 108 | 
            +
             | 
| 109 | 
            +
                # Load the model and tokenizer
         | 
| 110 | 
            +
                model, tokenizer = load_model(cfg.base_model, cfg.model_type, cfg.tokenizer_type, cfg, adapter=cfg.adapter)
         | 
| 111 | 
            +
                datasets = []
         | 
| 112 | 
            +
                for d in cfg.datasets:
         | 
| 113 | 
            +
                    ds: IterableDataset = load_dataset("json", data_files=d.path, streaming=True, num_proc=4, split=None)
         | 
| 114 | 
            +
                    if d.type == "alpaca":
         | 
| 115 | 
            +
                        ds_strategy = AlpacaPromptTokenizingStrategy(AlpacaPrompter(), tokenizer, cfg.train_on_inputs, cfg.sequence_len)
         | 
| 116 | 
            +
                        ds_wrapper = TokenizedPromptDataset(ds_strategy, ds)
         | 
| 117 | 
            +
                        datasets.append(ds_wrapper)
         | 
| 118 | 
            +
                    elif d.type == "gpteacher":
         | 
| 119 | 
            +
                        ds_strategy = GPTeacherPromptTokenizingStrategy(GPTeacherPrompter(), tokenizer, cfg.train_on_inputs, cfg.sequence_len)
         | 
| 120 | 
            +
                        ds_wrapper = TokenizedPromptDataset(ds_strategy, ds)
         | 
| 121 | 
            +
                        datasets.append(ds_wrapper)
         | 
| 122 | 
            +
                    elif d.type == "sharegpt":
         | 
| 123 | 
            +
                        ds_strategy = ShareGPTPromptTokenizingStrategy(ShareGPTPrompter(), tokenizer, cfg.train_on_inputs, cfg.sequence_len)
         | 
| 124 | 
            +
                        ds_wrapper = TokenizedPromptDataset(ds_strategy, ds)
         | 
| 125 | 
            +
                        datasets.append(ds_wrapper)
         | 
| 126 | 
            +
             | 
| 127 | 
            +
             | 
| 128 | 
            +
            if __name__ == "__main__":
         | 
| 129 | 
            +
                fire.Fire(train)
         | 
    	
        setup.cfg
    ADDED
    
    | @@ -0,0 +1,23 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            [metadata]
         | 
| 2 | 
            +
            name = axolotl
         | 
| 3 | 
            +
            version = 0.1.0
         | 
| 4 | 
            +
            description = You know you're going to axolotl questions
         | 
| 5 | 
            +
            author = Wing Lian
         | 
| 6 | 
            +
            author_email = [email protected]
         | 
| 7 | 
            +
            license = MIT
         | 
| 8 | 
            +
             | 
| 9 | 
            +
            [options]
         | 
| 10 | 
            +
            package_dir =
         | 
| 11 | 
            +
                =src
         | 
| 12 | 
            +
            packages = find:
         | 
| 13 | 
            +
            install_requires =
         | 
| 14 | 
            +
                transformers @ git+https://github.com/huggingface/transformers.git@main
         | 
| 15 | 
            +
                peft @ git+https://github.com/huggingface/peft.git@main
         | 
| 16 | 
            +
                attrdict
         | 
| 17 | 
            +
                fire
         | 
| 18 | 
            +
                PyYAML == 6.0
         | 
| 19 | 
            +
                black
         | 
| 20 | 
            +
             | 
| 21 | 
            +
            [options.packages.find]
         | 
| 22 | 
            +
            where = src
         | 
| 23 | 
            +
             | 
    	
        src/axolotl/__init__.py
    ADDED
    
    | 
            File without changes
         | 
    	
        src/axolotl/convert.py
    ADDED
    
    | @@ -0,0 +1,50 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            import json
         | 
| 2 | 
            +
            import sys
         | 
| 3 | 
            +
             | 
| 4 | 
            +
             | 
| 5 | 
            +
            class FileReader:
         | 
| 6 | 
            +
                def read(self, file_path):
         | 
| 7 | 
            +
                    with open(file_path, "r") as file:
         | 
| 8 | 
            +
                        return file.read()
         | 
| 9 | 
            +
             | 
| 10 | 
            +
             | 
| 11 | 
            +
            class FileWriter:
         | 
| 12 | 
            +
                def __init__(self, file_path):
         | 
| 13 | 
            +
                    self.file_path = file_path
         | 
| 14 | 
            +
             | 
| 15 | 
            +
                def write(self, content):
         | 
| 16 | 
            +
                    with open(self.file_path, "w") as file:
         | 
| 17 | 
            +
                        file.write(content)
         | 
| 18 | 
            +
             | 
| 19 | 
            +
             | 
| 20 | 
            +
            class StdoutWriter:
         | 
| 21 | 
            +
                def write(self, content):
         | 
| 22 | 
            +
                    sys.stdout.write(content)
         | 
| 23 | 
            +
                    sys.stdout.write("\n")
         | 
| 24 | 
            +
             | 
| 25 | 
            +
             | 
| 26 | 
            +
            class JsonParser:
         | 
| 27 | 
            +
                def parse(self, content):
         | 
| 28 | 
            +
                    return json.loads(content)
         | 
| 29 | 
            +
             | 
| 30 | 
            +
             | 
| 31 | 
            +
            class JsonlSerializer:
         | 
| 32 | 
            +
                def serialize(self, data):
         | 
| 33 | 
            +
                    lines = [json.dumps(item) for item in data]
         | 
| 34 | 
            +
                    return "\n".join(lines)
         | 
| 35 | 
            +
             | 
| 36 | 
            +
             | 
| 37 | 
            +
            class JsonToJsonlConverter:
         | 
| 38 | 
            +
                def __init__(self, file_reader, file_writer, json_parser, jsonl_serializer):
         | 
| 39 | 
            +
                    self.file_reader = file_reader
         | 
| 40 | 
            +
                    self.file_writer = file_writer
         | 
| 41 | 
            +
                    self.json_parser = json_parser
         | 
| 42 | 
            +
                    self.jsonl_serializer = jsonl_serializer
         | 
| 43 | 
            +
             | 
| 44 | 
            +
                def convert(self, input_file_path, output_file_path):
         | 
| 45 | 
            +
                    content = self.file_reader.read(input_file_path)
         | 
| 46 | 
            +
                    data = self.json_parser.parse(content)
         | 
| 47 | 
            +
                    jsonl_content = self.jsonl_serializer.serialize(data)
         | 
| 48 | 
            +
                    self.file_writer.write(jsonl_content)
         | 
| 49 | 
            +
             | 
| 50 | 
            +
             | 
    	
        src/axolotl/datasets.py
    ADDED
    
    | @@ -0,0 +1,86 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            from typing import List
         | 
| 2 | 
            +
             | 
| 3 | 
            +
            import torch
         | 
| 4 | 
            +
            from datasets import IterableDataset
         | 
| 5 | 
            +
            from .prompt_tokenizers import PromptTokenizingStrategy
         | 
| 6 | 
            +
             | 
| 7 | 
            +
             | 
| 8 | 
            +
            # We want this to be a wrapper for an existing dataset that we have loaded
         | 
| 9 | 
            +
            # lets use the concept of middlewares to wrap each dataset, for example
         | 
| 10 | 
            +
            # ConstantLengthDataset(ShuffledDataset([TokenizedPromptDataset(alpaca_dataset)]))
         | 
| 11 | 
            +
            # let's check to ensure we don't truncate an item in the middle, we'll use
         | 
| 12 | 
            +
            # the collators later on to pad the datasets
         | 
| 13 | 
            +
             | 
| 14 | 
            +
             | 
| 15 | 
            +
            class TokenizedPromptDataset(IterableDataset):
         | 
| 16 | 
            +
                def __init__(
         | 
| 17 | 
            +
                    self,
         | 
| 18 | 
            +
                    prompt_tokenizer: PromptTokenizingStrategy,
         | 
| 19 | 
            +
                    dataset: IterableDataset,
         | 
| 20 | 
            +
                ):
         | 
| 21 | 
            +
                    self.prompt_tokenizer = prompt_tokenizer
         | 
| 22 | 
            +
                    self.dataset = dataset
         | 
| 23 | 
            +
             | 
| 24 | 
            +
                def __iter__(self):
         | 
| 25 | 
            +
                    iterator = iter(self.dataset)
         | 
| 26 | 
            +
                    yield self.prompt_tokenizer.tokenize_prompt(next(iterator))
         | 
| 27 | 
            +
             | 
| 28 | 
            +
             | 
| 29 | 
            +
            class ConstantLengthDataset(IterableDataset):
         | 
| 30 | 
            +
                """
         | 
| 31 | 
            +
                Iterable dataset that returns constant length chunks of tokens from stream of text files.
         | 
| 32 | 
            +
                    Args:
         | 
| 33 | 
            +
                        tokenizer (Tokenizer): The processor used for proccessing the data.
         | 
| 34 | 
            +
                        dataset (dataset.Dataset): Dataset with text files.
         | 
| 35 | 
            +
                        infinite (bool): If True the iterator is reset after dataset reaches end else stops.
         | 
| 36 | 
            +
                        seq_length (int): Length of token sequences to return.
         | 
| 37 | 
            +
                        chars_per_token (int): Number of characters per token used to estimate number of tokens in text buffer.
         | 
| 38 | 
            +
                """
         | 
| 39 | 
            +
             | 
| 40 | 
            +
                def __init__(
         | 
| 41 | 
            +
                    self,
         | 
| 42 | 
            +
                    tokenizer,
         | 
| 43 | 
            +
                    datasets,
         | 
| 44 | 
            +
                    infinite=False,
         | 
| 45 | 
            +
                    seq_length=2048,
         | 
| 46 | 
            +
                    num_of_sequences=1024,
         | 
| 47 | 
            +
                    chars_per_token=3.6,
         | 
| 48 | 
            +
                ):
         | 
| 49 | 
            +
                    self.tokenizer = tokenizer
         | 
| 50 | 
            +
                    self.concat_token_id = tokenizer.eos_token_id if tokenizer.eos_token_id else args.eos_token_id
         | 
| 51 | 
            +
                    self.datasets: List[IterableDataset] = datasets
         | 
| 52 | 
            +
                    self.seq_length = seq_length
         | 
| 53 | 
            +
                    self.infinite = infinite
         | 
| 54 | 
            +
                    self.current_size = 0
         | 
| 55 | 
            +
                    self.max_buffer_size = seq_length * chars_per_token * num_of_sequences
         | 
| 56 | 
            +
             | 
| 57 | 
            +
                def __iter__(self):
         | 
| 58 | 
            +
                    iterator = iter(self.datasets)
         | 
| 59 | 
            +
                    more_examples = True
         | 
| 60 | 
            +
                    while more_examples:
         | 
| 61 | 
            +
                        buffer, buffer_len = [], 0
         | 
| 62 | 
            +
                        while True:
         | 
| 63 | 
            +
                            if buffer_len >= self.max_buffer_size:
         | 
| 64 | 
            +
                                break
         | 
| 65 | 
            +
                            try:
         | 
| 66 | 
            +
                                buffer.append(next(iterator))
         | 
| 67 | 
            +
                                buffer_len += len(buffer[-1])
         | 
| 68 | 
            +
                            except StopIteration:
         | 
| 69 | 
            +
                                if self.infinite:
         | 
| 70 | 
            +
                                    iterator = iter(self.datasets)
         | 
| 71 | 
            +
                                else:
         | 
| 72 | 
            +
                                    more_examples = False
         | 
| 73 | 
            +
                                    break
         | 
| 74 | 
            +
                        tokenized_inputs = self.tokenizer(buffer, truncation=False)["input_ids"]
         | 
| 75 | 
            +
                        all_token_ids = []
         | 
| 76 | 
            +
                        for tokenized_input in tokenized_inputs:
         | 
| 77 | 
            +
                            all_token_ids.extend(tokenized_input + [self.concat_token_id])
         | 
| 78 | 
            +
                        for i in range(0, len(all_token_ids), self.seq_length):
         | 
| 79 | 
            +
                            input_ids = all_token_ids[i : i + self.seq_length]
         | 
| 80 | 
            +
                            if len(input_ids) == self.seq_length:
         | 
| 81 | 
            +
                                self.current_size += 1
         | 
| 82 | 
            +
                                yield {
         | 
| 83 | 
            +
                                    "input_ids": torch.LongTensor(input_ids),
         | 
| 84 | 
            +
                                    "labels": torch.LongTensor(input_ids),
         | 
| 85 | 
            +
                                    "attention_masks": torch.LongTensor(input_ids),
         | 
| 86 | 
            +
                                }
         | 
    	
        src/axolotl/prompt_tokenizers.py
    ADDED
    
    | @@ -0,0 +1,83 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            import abc
         | 
| 2 | 
            +
             | 
| 3 | 
            +
            from transformers import PreTrainedTokenizer
         | 
| 4 | 
            +
             | 
| 5 | 
            +
            IGNORE_INDEX = -100
         | 
| 6 | 
            +
            LLAMA_DEFAULT_PAD_TOKEN = "[PAD]"
         | 
| 7 | 
            +
            LLAMA_DEFAULT_EOS_TOKEN = "</s>"
         | 
| 8 | 
            +
            LLAMA_DEFAULT_BOS_TOKEN = "<s>"
         | 
| 9 | 
            +
            LLAMA_DEFAULT_UNK_TOKEN = "<unk>"
         | 
| 10 | 
            +
             | 
| 11 | 
            +
             | 
| 12 | 
            +
            class PromptTokenizingStrategy(abc.ABC):
         | 
| 13 | 
            +
                def __init__(
         | 
| 14 | 
            +
                    self,
         | 
| 15 | 
            +
                    prompter,
         | 
| 16 | 
            +
                    tokenizer,
         | 
| 17 | 
            +
                    train_on_inputs: bool = False,
         | 
| 18 | 
            +
                    sequence_len: int = 2048,
         | 
| 19 | 
            +
                ):
         | 
| 20 | 
            +
                    self.prompter = prompter
         | 
| 21 | 
            +
                    self.tokenizer: PreTrainedTokenizer = tokenizer
         | 
| 22 | 
            +
                    self.train_on_inputs = train_on_inputs
         | 
| 23 | 
            +
                    self.sequence_len = sequence_len
         | 
| 24 | 
            +
             | 
| 25 | 
            +
                @abc.abstractmethod
         | 
| 26 | 
            +
                def tokenize_prompt(self, prompt):
         | 
| 27 | 
            +
                    pass
         | 
| 28 | 
            +
             | 
| 29 | 
            +
             | 
| 30 | 
            +
            class AlpacaPromptTokenizingStrategy(PromptTokenizingStrategy):
         | 
| 31 | 
            +
                def tokenize_prompt(self, prompt):
         | 
| 32 | 
            +
                    full_prompt = self._tokenize_full_prompt(prompt)
         | 
| 33 | 
            +
                    tokenized_full_prompt = self._tokenize(full_prompt)
         | 
| 34 | 
            +
                    if not self.train_on_inputs:
         | 
| 35 | 
            +
                        user_prompt = self.prompter.generate_prompt(
         | 
| 36 | 
            +
                            prompt["instruction"], prompt["input"]
         | 
| 37 | 
            +
                        )
         | 
| 38 | 
            +
                        tokenized_user_prompt = self._tokenize(user_prompt, add_eos_token=False)
         | 
| 39 | 
            +
                        user_prompt_len = len(tokenized_user_prompt["input_ids"])
         | 
| 40 | 
            +
                        # TODO this could be sped up using numpy array slicing
         | 
| 41 | 
            +
                        tokenized_full_prompt["labels"] = [-100] * user_prompt_len + tokenized_full_prompt["labels"][user_prompt_len:]
         | 
| 42 | 
            +
             | 
| 43 | 
            +
                    return tokenized_full_prompt
         | 
| 44 | 
            +
             | 
| 45 | 
            +
                def _tokenize_full_prompt(self, prompt):
         | 
| 46 | 
            +
                    return self.prompter.generate_prompt(
         | 
| 47 | 
            +
                        prompt["instruction"],
         | 
| 48 | 
            +
                        prompt["input"],
         | 
| 49 | 
            +
                        prompt["output"],
         | 
| 50 | 
            +
                    )
         | 
| 51 | 
            +
             | 
| 52 | 
            +
                def _tokenize(self, prompt, add_eos_token=True):
         | 
| 53 | 
            +
                    result = self.tokenizer(
         | 
| 54 | 
            +
                        prompt,
         | 
| 55 | 
            +
                        truncation=True,
         | 
| 56 | 
            +
                        max_length=self.sequence_len,
         | 
| 57 | 
            +
                        padding=False,
         | 
| 58 | 
            +
                        return_tensors=None,
         | 
| 59 | 
            +
                    )
         | 
| 60 | 
            +
                    if (
         | 
| 61 | 
            +
                        result["input_ids"][-1] != self.tokenizer.eos_token_id
         | 
| 62 | 
            +
                        and len(result["input_ids"]) < self.sequence_len
         | 
| 63 | 
            +
                        and add_eos_token
         | 
| 64 | 
            +
                    ):
         | 
| 65 | 
            +
                        result["input_ids"].append(self.tokenizer.eos_token_id)
         | 
| 66 | 
            +
                        result["attention_mask"].append(1)
         | 
| 67 | 
            +
             | 
| 68 | 
            +
                    result["labels"] = result["input_ids"].copy()
         | 
| 69 | 
            +
                    return result
         | 
| 70 | 
            +
             | 
| 71 | 
            +
             | 
| 72 | 
            +
            class GPTeacherPromptTokenizingStrategy(AlpacaPromptTokenizingStrategy):
         | 
| 73 | 
            +
                def _tokenize_full_prompt(self, prompt):
         | 
| 74 | 
            +
                    return self.prompter.generate_prompt(
         | 
| 75 | 
            +
                        prompt["instruction"],
         | 
| 76 | 
            +
                        prompt["input"],
         | 
| 77 | 
            +
                        prompt["response"],
         | 
| 78 | 
            +
                    )
         | 
| 79 | 
            +
             | 
| 80 | 
            +
             | 
| 81 | 
            +
            class ShareGPTPromptTokenizingStrategy(PromptTokenizingStrategy):
         | 
| 82 | 
            +
                def tokenize_prompt(self, prompt):
         | 
| 83 | 
            +
                    pass
         | 
    	
        src/axolotl/prompters.py
    ADDED
    
    | @@ -0,0 +1,10 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            class AlpacaPrompter:
         | 
| 2 | 
            +
                pass
         | 
| 3 | 
            +
             | 
| 4 | 
            +
             | 
| 5 | 
            +
            class ShareGPTPrompter:
         | 
| 6 | 
            +
                pass
         | 
| 7 | 
            +
             | 
| 8 | 
            +
             | 
| 9 | 
            +
            class GPTeacherPrompter:
         | 
| 10 | 
            +
                pass
         | 
