use accelerate logging for zero/main loggin only
Browse files- src/axolotl/train.py +6 -7
- src/axolotl/utils/trainer.py +17 -17
src/axolotl/train.py
CHANGED
|
@@ -1,6 +1,5 @@
|
|
| 1 |
"""Prepare and train a model on a dataset. Can also infer from a model or merge lora"""
|
| 2 |
|
| 3 |
-
import logging
|
| 4 |
import os
|
| 5 |
import signal
|
| 6 |
import sys
|
|
@@ -10,6 +9,7 @@ from typing import Optional
|
|
| 10 |
|
| 11 |
import torch
|
| 12 |
import transformers.modelcard
|
|
|
|
| 13 |
from datasets import Dataset
|
| 14 |
from optimum.bettertransformer import BetterTransformer
|
| 15 |
from transformers.deepspeed import is_deepspeed_zero3_enabled
|
|
@@ -18,7 +18,6 @@ from axolotl.common.cli import TrainerCliArgs
|
|
| 18 |
from axolotl.logging_config import configure_logging
|
| 19 |
from axolotl.monkeypatch import neft_embeddings
|
| 20 |
from axolotl.utils.dict import DictDefault
|
| 21 |
-
from axolotl.utils.distributed import zero_only
|
| 22 |
from axolotl.utils.models import load_model, load_tokenizer
|
| 23 |
from axolotl.utils.trainer import setup_trainer
|
| 24 |
|
|
@@ -27,7 +26,7 @@ src_dir = os.path.join(project_root, "src")
|
|
| 27 |
sys.path.insert(0, src_dir)
|
| 28 |
|
| 29 |
configure_logging()
|
| 30 |
-
LOG =
|
| 31 |
|
| 32 |
|
| 33 |
@dataclass
|
|
@@ -45,10 +44,10 @@ def train(
|
|
| 45 |
*, cfg: DictDefault, cli_args: TrainerCliArgs, dataset_meta: TrainDatasetMeta
|
| 46 |
):
|
| 47 |
# load the tokenizer first
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
tokenizer = load_tokenizer(cfg)
|
| 53 |
|
| 54 |
train_dataset = dataset_meta.train_dataset
|
|
|
|
| 1 |
"""Prepare and train a model on a dataset. Can also infer from a model or merge lora"""
|
| 2 |
|
|
|
|
| 3 |
import os
|
| 4 |
import signal
|
| 5 |
import sys
|
|
|
|
| 9 |
|
| 10 |
import torch
|
| 11 |
import transformers.modelcard
|
| 12 |
+
from accelerate.logging import get_logger
|
| 13 |
from datasets import Dataset
|
| 14 |
from optimum.bettertransformer import BetterTransformer
|
| 15 |
from transformers.deepspeed import is_deepspeed_zero3_enabled
|
|
|
|
| 18 |
from axolotl.logging_config import configure_logging
|
| 19 |
from axolotl.monkeypatch import neft_embeddings
|
| 20 |
from axolotl.utils.dict import DictDefault
|
|
|
|
| 21 |
from axolotl.utils.models import load_model, load_tokenizer
|
| 22 |
from axolotl.utils.trainer import setup_trainer
|
| 23 |
|
|
|
|
| 26 |
sys.path.insert(0, src_dir)
|
| 27 |
|
| 28 |
configure_logging()
|
| 29 |
+
LOG = get_logger("axolotl.train")
|
| 30 |
|
| 31 |
|
| 32 |
@dataclass
|
|
|
|
| 44 |
*, cfg: DictDefault, cli_args: TrainerCliArgs, dataset_meta: TrainDatasetMeta
|
| 45 |
):
|
| 46 |
# load the tokenizer first
|
| 47 |
+
LOG.debug(
|
| 48 |
+
f"loading tokenizer... {cfg.tokenizer_config or cfg.base_model_config}",
|
| 49 |
+
main_process_only=True,
|
| 50 |
+
)
|
| 51 |
tokenizer = load_tokenizer(cfg)
|
| 52 |
|
| 53 |
train_dataset = dataset_meta.train_dataset
|
src/axolotl/utils/trainer.py
CHANGED
|
@@ -1,5 +1,4 @@
|
|
| 1 |
"""Module containing the Trainer class and related functions"""
|
| 2 |
-
import logging
|
| 3 |
import math
|
| 4 |
import os
|
| 5 |
from contextlib import contextmanager
|
|
@@ -10,6 +9,7 @@ import numpy as np
|
|
| 10 |
import torch
|
| 11 |
import torch.cuda
|
| 12 |
import torch.distributed as dist
|
|
|
|
| 13 |
from datasets import set_caching_enabled
|
| 14 |
from torch.utils.data import DistributedSampler, RandomSampler
|
| 15 |
|
|
@@ -21,10 +21,9 @@ from axolotl.utils.distributed import (
|
|
| 21 |
is_main_process,
|
| 22 |
reduce_and_broadcast,
|
| 23 |
zero_first,
|
| 24 |
-
zero_only,
|
| 25 |
)
|
| 26 |
|
| 27 |
-
LOG =
|
| 28 |
|
| 29 |
|
| 30 |
@torch.jit.script
|
|
@@ -160,8 +159,7 @@ def calculate_total_num_steps(cfg, train_dataset, tokenizer):
|
|
| 160 |
.apply(lambda x: len(x)) # pylint: disable=unnecessary-lambda
|
| 161 |
.values
|
| 162 |
)
|
| 163 |
-
|
| 164 |
-
LOG.debug(f"total_num_tokens: {total_num_tokens}")
|
| 165 |
cfg.total_num_tokens = total_num_tokens
|
| 166 |
|
| 167 |
if not cfg.total_supervised_tokens:
|
|
@@ -171,8 +169,10 @@ def calculate_total_num_steps(cfg, train_dataset, tokenizer):
|
|
| 171 |
.apply(lambda x: np.sum(np.array(x) != -100))
|
| 172 |
.sum()
|
| 173 |
)
|
| 174 |
-
|
| 175 |
-
|
|
|
|
|
|
|
| 176 |
cfg.total_supervised_tokens = total_supervised_tokens
|
| 177 |
|
| 178 |
if cfg.sample_packing_eff_est:
|
|
@@ -191,10 +191,10 @@ def calculate_total_num_steps(cfg, train_dataset, tokenizer):
|
|
| 191 |
)
|
| 192 |
* cfg.num_epochs
|
| 193 |
)
|
| 194 |
-
|
| 195 |
-
|
| 196 |
-
|
| 197 |
-
|
| 198 |
else:
|
| 199 |
if cfg.world_size > 1 and is_distributed():
|
| 200 |
sampler = DistributedSampler(
|
|
@@ -223,8 +223,7 @@ def calculate_total_num_steps(cfg, train_dataset, tokenizer):
|
|
| 223 |
)
|
| 224 |
data_loader_len = data_loader.len_w_stats()
|
| 225 |
actual_eff = data_loader.efficiency()
|
| 226 |
-
|
| 227 |
-
LOG.debug(f"data_loader_len: {data_loader_len}")
|
| 228 |
# FIXME: is there a bug here somewhere? the total num steps depends
|
| 229 |
# on the agreed on value for sample_packing_eff_est
|
| 230 |
total_num_steps = int(math.floor(data_loader_len * cfg.num_epochs))
|
|
@@ -241,14 +240,15 @@ def calculate_total_num_steps(cfg, train_dataset, tokenizer):
|
|
| 241 |
math.ceil(sample_packing_actual_eff_all * 100.0) / 100.0
|
| 242 |
)
|
| 243 |
cfg.sample_packing_eff_est = sample_packing_eff_est
|
| 244 |
-
|
| 245 |
-
|
|
|
|
|
|
|
| 246 |
else:
|
| 247 |
total_num_steps = int(
|
| 248 |
math.ceil(len(train_dataset) * cfg.num_epochs / cfg.batch_size)
|
| 249 |
)
|
| 250 |
-
|
| 251 |
-
LOG.debug(f"total_num_steps: {total_num_steps}")
|
| 252 |
return total_num_steps
|
| 253 |
|
| 254 |
|
|
|
|
| 1 |
"""Module containing the Trainer class and related functions"""
|
|
|
|
| 2 |
import math
|
| 3 |
import os
|
| 4 |
from contextlib import contextmanager
|
|
|
|
| 9 |
import torch
|
| 10 |
import torch.cuda
|
| 11 |
import torch.distributed as dist
|
| 12 |
+
from accelerate.logging import get_logger
|
| 13 |
from datasets import set_caching_enabled
|
| 14 |
from torch.utils.data import DistributedSampler, RandomSampler
|
| 15 |
|
|
|
|
| 21 |
is_main_process,
|
| 22 |
reduce_and_broadcast,
|
| 23 |
zero_first,
|
|
|
|
| 24 |
)
|
| 25 |
|
| 26 |
+
LOG = get_logger("axolotl")
|
| 27 |
|
| 28 |
|
| 29 |
@torch.jit.script
|
|
|
|
| 159 |
.apply(lambda x: len(x)) # pylint: disable=unnecessary-lambda
|
| 160 |
.values
|
| 161 |
)
|
| 162 |
+
LOG.debug(f"total_num_tokens: {total_num_tokens}", main_process_only=True)
|
|
|
|
| 163 |
cfg.total_num_tokens = total_num_tokens
|
| 164 |
|
| 165 |
if not cfg.total_supervised_tokens:
|
|
|
|
| 169 |
.apply(lambda x: np.sum(np.array(x) != -100))
|
| 170 |
.sum()
|
| 171 |
)
|
| 172 |
+
LOG.debug(
|
| 173 |
+
f"`total_supervised_tokens: {total_supervised_tokens}`",
|
| 174 |
+
main_process_only=True,
|
| 175 |
+
)
|
| 176 |
cfg.total_supervised_tokens = total_supervised_tokens
|
| 177 |
|
| 178 |
if cfg.sample_packing_eff_est:
|
|
|
|
| 191 |
)
|
| 192 |
* cfg.num_epochs
|
| 193 |
)
|
| 194 |
+
LOG.debug(
|
| 195 |
+
f"total_num_tokens: {cfg.total_num_tokens}, total_num_steps: {total_num_steps}",
|
| 196 |
+
main_process_only=True,
|
| 197 |
+
)
|
| 198 |
else:
|
| 199 |
if cfg.world_size > 1 and is_distributed():
|
| 200 |
sampler = DistributedSampler(
|
|
|
|
| 223 |
)
|
| 224 |
data_loader_len = data_loader.len_w_stats()
|
| 225 |
actual_eff = data_loader.efficiency()
|
| 226 |
+
LOG.debug(f"data_loader_len: {data_loader_len}", main_process_only=True)
|
|
|
|
| 227 |
# FIXME: is there a bug here somewhere? the total num steps depends
|
| 228 |
# on the agreed on value for sample_packing_eff_est
|
| 229 |
total_num_steps = int(math.floor(data_loader_len * cfg.num_epochs))
|
|
|
|
| 240 |
math.ceil(sample_packing_actual_eff_all * 100.0) / 100.0
|
| 241 |
)
|
| 242 |
cfg.sample_packing_eff_est = sample_packing_eff_est
|
| 243 |
+
LOG.debug(
|
| 244 |
+
f"sample_packing_eff_est: {cfg.sample_packing_eff_est}",
|
| 245 |
+
main_process_only=True,
|
| 246 |
+
)
|
| 247 |
else:
|
| 248 |
total_num_steps = int(
|
| 249 |
math.ceil(len(train_dataset) * cfg.num_epochs / cfg.batch_size)
|
| 250 |
)
|
| 251 |
+
LOG.debug(f"total_num_steps: {total_num_steps}", main_process_only=True)
|
|
|
|
| 252 |
return total_num_steps
|
| 253 |
|
| 254 |
|