fix lora target module, require explicit flash attention, fix min logging steps, don't use adam8bit for int4, hash prepared datasets, support hf hub datasets
Browse files- configs/llama_65B_alpaca.yml +1 -1
- configs/llama_7B_4bit.yml +41 -0
- configs/llama_7B_alpaca.yml +1 -1
- scripts/finetune.py +49 -30
configs/llama_65B_alpaca.yml
CHANGED
|
@@ -21,7 +21,7 @@ lora_alpha: 16
|
|
| 21 |
lora_dropout: 0.05
|
| 22 |
lora_target_modules:
|
| 23 |
- q_proj
|
| 24 |
-
-
|
| 25 |
lora_fan_in_fan_out: false
|
| 26 |
wandb_project: llama-65b-lora
|
| 27 |
wandb_watch:
|
|
|
|
| 21 |
lora_dropout: 0.05
|
| 22 |
lora_target_modules:
|
| 23 |
- q_proj
|
| 24 |
+
- v_proj
|
| 25 |
lora_fan_in_fan_out: false
|
| 26 |
wandb_project: llama-65b-lora
|
| 27 |
wandb_watch:
|
configs/llama_7B_4bit.yml
ADDED
|
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
base_model: decapoda-research/llama-7b-hf-int4
|
| 2 |
+
base_model_config: decapoda-research/llama-7b-hf
|
| 3 |
+
model_type: LlamaForCausalLM
|
| 4 |
+
tokenizer_type: LlamaTokenizer
|
| 5 |
+
load_in_8bit: true
|
| 6 |
+
datasets:
|
| 7 |
+
- path: vicgalle/alpaca-gpt4
|
| 8 |
+
type: alpaca
|
| 9 |
+
dataset_prepared_path: data/last_run_prepared
|
| 10 |
+
val_set_size: 0.04
|
| 11 |
+
adapter: lora
|
| 12 |
+
lora_model_dir:
|
| 13 |
+
sequence_len: 2048
|
| 14 |
+
max_packed_sequence_len: 1024
|
| 15 |
+
lora_r: 8
|
| 16 |
+
lora_alpha: 16
|
| 17 |
+
lora_dropout: 0.05
|
| 18 |
+
lora_target_modules:
|
| 19 |
+
- q_proj
|
| 20 |
+
- v_proj
|
| 21 |
+
# - k_proj
|
| 22 |
+
# - o_proj
|
| 23 |
+
lora_fan_in_fan_out: false
|
| 24 |
+
wandb_project:
|
| 25 |
+
wandb_watch:
|
| 26 |
+
wandb_run_id:
|
| 27 |
+
wandb_log_model: checkpoint
|
| 28 |
+
output_dir: ./lora-test
|
| 29 |
+
batch_size: 8
|
| 30 |
+
micro_batch_size: 2
|
| 31 |
+
num_epochs: 3
|
| 32 |
+
learning_rate: 0.00003
|
| 33 |
+
train_on_inputs: false
|
| 34 |
+
group_by_length: false
|
| 35 |
+
bf16: true
|
| 36 |
+
tf32: true
|
| 37 |
+
gradient_checkpointing: false
|
| 38 |
+
early_stopping_patience: 3
|
| 39 |
+
resume_from_checkpoint:
|
| 40 |
+
local_rank:
|
| 41 |
+
load_4bit: true
|
configs/llama_7B_alpaca.yml
CHANGED
|
@@ -21,7 +21,7 @@ lora_alpha: 16
|
|
| 21 |
lora_dropout: 0.05
|
| 22 |
lora_target_modules:
|
| 23 |
- q_proj
|
| 24 |
-
-
|
| 25 |
lora_fan_in_fan_out: false
|
| 26 |
wandb_project: llama-7b-lora
|
| 27 |
wandb_watch:
|
|
|
|
| 21 |
lora_dropout: 0.05
|
| 22 |
lora_target_modules:
|
| 23 |
- q_proj
|
| 24 |
+
- v_proj
|
| 25 |
lora_fan_in_fan_out: false
|
| 26 |
wandb_project: llama-7b-lora
|
| 27 |
wandb_watch:
|
scripts/finetune.py
CHANGED
|
@@ -4,6 +4,7 @@ import os
|
|
| 4 |
import random
|
| 5 |
import signal
|
| 6 |
import sys
|
|
|
|
| 7 |
from pathlib import Path
|
| 8 |
|
| 9 |
import bitsandbytes as bnb
|
|
@@ -13,6 +14,7 @@ import transformers
|
|
| 13 |
import yaml
|
| 14 |
from attrdict import AttrDefault
|
| 15 |
from datasets import load_dataset, IterableDataset, Dataset, load_from_disk
|
|
|
|
| 16 |
from torch import nn
|
| 17 |
from transformers import (
|
| 18 |
AutoModelForCausalLM,
|
|
@@ -20,6 +22,7 @@ from transformers import (
|
|
| 20 |
LlamaForCausalLM,
|
| 21 |
LlamaTokenizer,
|
| 22 |
EarlyStoppingCallback,
|
|
|
|
| 23 |
)
|
| 24 |
|
| 25 |
# add src to the pythonpath so we don't need to pip install this
|
|
@@ -43,7 +46,7 @@ DEFAULT_DATASET_PREPARED_PATH = "last_run_prepared"
|
|
| 43 |
|
| 44 |
|
| 45 |
def setup_wandb_env_vars(cfg):
|
| 46 |
-
if len(cfg.wandb_project) > 0:
|
| 47 |
os.environ["WANDB_PROJECT"] = cfg.wandb_project
|
| 48 |
cfg.use_wandb = True
|
| 49 |
if cfg.wandb_watch and len(cfg.wandb_watch) > 0:
|
|
@@ -61,7 +64,7 @@ def load_model(base_model, base_model_config, model_type, tokenizer_type, cfg, a
|
|
| 61 |
|
| 62 |
if adapter != "lora":
|
| 63 |
raise NotImplementedError(f"{adapter} peft adapter not available")
|
| 64 |
-
if "llama" in base_model:
|
| 65 |
if cfg.device not in ["mps", "cpu"] and inference is False:
|
| 66 |
from axolotl.flash_attn import replace_llama_attn_with_flash_attn
|
| 67 |
replace_llama_attn_with_flash_attn()
|
|
@@ -138,11 +141,12 @@ def load_model(base_model, base_model_config, model_type, tokenizer_type, cfg, a
|
|
| 138 |
if tokenizer.__class__.__name__ in ["LlamaTokenizer", "LlamaTokenizerFast"]:
|
| 139 |
tokenizer.pad_token = LLAMA_DEFAULT_PAD_TOKEN
|
| 140 |
|
|
|
|
| 141 |
if tokenizer.__class__.__name__ == "GPTNeoXTokenizerFast":
|
| 142 |
tokenizer.add_special_tokens({"pad_token": "[PAD]"})
|
| 143 |
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
| 144 |
|
| 145 |
-
if load_in_8bit:
|
| 146 |
model = prepare_model_for_int8_training(model)
|
| 147 |
|
| 148 |
lora_config = LoraConfig(
|
|
@@ -227,14 +231,19 @@ def check_dataset_labels(dataset, tokenizer):
|
|
| 227 |
|
| 228 |
|
| 229 |
def do_inference(cfg, model, tokenizer):
|
|
|
|
|
|
|
|
|
|
|
|
|
| 230 |
instruction = "Tell me a joke about dromedaries."
|
| 231 |
input = ""
|
| 232 |
prompt = "Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.\n\n### Instruction:\n{instruction}\n\n### Input:\n{input}\n\n### Response:\n".format(instruction=instruction, input=input)
|
| 233 |
-
batch = tokenizer(prompt, return_tensors="pt", add_special_tokens=
|
| 234 |
|
| 235 |
model.eval()
|
| 236 |
with torch.no_grad():
|
| 237 |
-
|
|
|
|
| 238 |
do_sample=True, use_cache=True,
|
| 239 |
repetition_penalty=1.1,
|
| 240 |
max_new_tokens=100,
|
|
@@ -277,7 +286,7 @@ def setup_trainer(cfg, train_dataset, eval_dataset, model, tokenizer):
|
|
| 277 |
math.ceil(len(train_dataset) * cfg.num_epochs / cfg.batch_size)
|
| 278 |
)
|
| 279 |
warmup_steps = min(int(0.03 * total_num_steps), 100)
|
| 280 |
-
logging_steps = min(int(0.005 * total_num_steps), 10)
|
| 281 |
save_steps = eval_steps = min(int(0.05 * total_num_steps), 200)
|
| 282 |
|
| 283 |
training_arguments_kwargs = {}
|
|
@@ -325,21 +334,24 @@ def setup_trainer(cfg, train_dataset, eval_dataset, model, tokenizer):
|
|
| 325 |
},
|
| 326 |
]
|
| 327 |
|
| 328 |
-
|
| 329 |
-
optimizer_grouped_parameters,
|
| 330 |
-
betas=(training_args.adam_beta1, training_args.adam_beta2),
|
| 331 |
-
eps=training_args.adam_epsilon,
|
| 332 |
-
lr=training_args.learning_rate,
|
| 333 |
-
)
|
| 334 |
|
| 335 |
-
|
| 336 |
-
|
| 337 |
-
|
| 338 |
-
|
| 339 |
-
|
| 340 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 341 |
|
| 342 |
-
trainer_kwargs = {}
|
| 343 |
if cfg.early_stopping_patience:
|
| 344 |
early_stop_cb = EarlyStoppingCallback(
|
| 345 |
cfg.early_stopping_patience,
|
|
@@ -351,7 +363,6 @@ def setup_trainer(cfg, train_dataset, eval_dataset, model, tokenizer):
|
|
| 351 |
train_dataset=train_dataset,
|
| 352 |
eval_dataset=eval_dataset,
|
| 353 |
args=training_args,
|
| 354 |
-
optimizers=(adam_bnb_optim, lr_scheduler),
|
| 355 |
data_collator=transformers.DataCollatorForSeq2Seq(
|
| 356 |
tokenizer, pad_to_multiple_of=8, return_tensors="pt", padding=True
|
| 357 |
),
|
|
@@ -412,7 +423,11 @@ def train(
|
|
| 412 |
do_inference(cfg, model, tokenizer)
|
| 413 |
return
|
| 414 |
|
| 415 |
-
if cfg.
|
|
|
|
|
|
|
|
|
|
|
|
|
| 416 |
logging.info("Loading prepared dataset from disk...")
|
| 417 |
dataset = load_from_disk(cfg.dataset_prepared_path)
|
| 418 |
logging.info("Prepared dataset loaded from disk...")
|
|
@@ -420,13 +435,20 @@ def train(
|
|
| 420 |
logging.info("Loading raw datasets...")
|
| 421 |
datasets = []
|
| 422 |
for d in cfg.datasets:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 423 |
if Path(d.path).exists():
|
| 424 |
ds: IterableDataset = load_dataset(
|
| 425 |
"json", data_files=d.path, streaming=True, split=None
|
| 426 |
)
|
| 427 |
-
|
| 428 |
-
|
| 429 |
-
# ds = load_dataset(d.path, split=None, data_files=d.name)
|
| 430 |
else:
|
| 431 |
raise Exception("unhandled dataset load")
|
| 432 |
|
|
@@ -449,7 +471,7 @@ def train(
|
|
| 449 |
ds_wrapper = TokenizedPromptDataset(ds_strategy, ds["train"])
|
| 450 |
datasets.append(ds_wrapper)
|
| 451 |
constant_len_dataset = ConstantLengthDataset(
|
| 452 |
-
tokenizer, datasets, seq_length=
|
| 453 |
)
|
| 454 |
logging.info("merging, packing, shuffling, and splitting master dataset")
|
| 455 |
dataset = Dataset.from_list(
|
|
@@ -457,11 +479,8 @@ def train(
|
|
| 457 |
).train_test_split(test_size=cfg.val_set_size, shuffle=True, seed=42)
|
| 458 |
|
| 459 |
if cfg.local_rank == 0:
|
| 460 |
-
logging.info("Saving prepared dataset to disk...")
|
| 461 |
-
|
| 462 |
-
dataset.save_to_disk(cfg.dataset_prepared_path)
|
| 463 |
-
else:
|
| 464 |
-
dataset.save_to_disk(DEFAULT_DATASET_PREPARED_PATH)
|
| 465 |
|
| 466 |
if prepare_ds_only:
|
| 467 |
logging.info("Finished preparing dataset. Exiting...")
|
|
|
|
| 4 |
import random
|
| 5 |
import signal
|
| 6 |
import sys
|
| 7 |
+
from hashlib import md5
|
| 8 |
from pathlib import Path
|
| 9 |
|
| 10 |
import bitsandbytes as bnb
|
|
|
|
| 14 |
import yaml
|
| 15 |
from attrdict import AttrDefault
|
| 16 |
from datasets import load_dataset, IterableDataset, Dataset, load_from_disk
|
| 17 |
+
from huggingface_hub.hf_api import DatasetInfo
|
| 18 |
from torch import nn
|
| 19 |
from transformers import (
|
| 20 |
AutoModelForCausalLM,
|
|
|
|
| 22 |
LlamaForCausalLM,
|
| 23 |
LlamaTokenizer,
|
| 24 |
EarlyStoppingCallback,
|
| 25 |
+
GenerationConfig,
|
| 26 |
)
|
| 27 |
|
| 28 |
# add src to the pythonpath so we don't need to pip install this
|
|
|
|
| 46 |
|
| 47 |
|
| 48 |
def setup_wandb_env_vars(cfg):
|
| 49 |
+
if cfg.wandb_project and len(cfg.wandb_project) > 0:
|
| 50 |
os.environ["WANDB_PROJECT"] = cfg.wandb_project
|
| 51 |
cfg.use_wandb = True
|
| 52 |
if cfg.wandb_watch and len(cfg.wandb_watch) > 0:
|
|
|
|
| 64 |
|
| 65 |
if adapter != "lora":
|
| 66 |
raise NotImplementedError(f"{adapter} peft adapter not available")
|
| 67 |
+
if "llama" in base_model and cfg.flash_attention:
|
| 68 |
if cfg.device not in ["mps", "cpu"] and inference is False:
|
| 69 |
from axolotl.flash_attn import replace_llama_attn_with_flash_attn
|
| 70 |
replace_llama_attn_with_flash_attn()
|
|
|
|
| 141 |
if tokenizer.__class__.__name__ in ["LlamaTokenizer", "LlamaTokenizerFast"]:
|
| 142 |
tokenizer.pad_token = LLAMA_DEFAULT_PAD_TOKEN
|
| 143 |
|
| 144 |
+
|
| 145 |
if tokenizer.__class__.__name__ == "GPTNeoXTokenizerFast":
|
| 146 |
tokenizer.add_special_tokens({"pad_token": "[PAD]"})
|
| 147 |
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
| 148 |
|
| 149 |
+
if load_in_8bit and not cfg.load_4bit:
|
| 150 |
model = prepare_model_for_int8_training(model)
|
| 151 |
|
| 152 |
lora_config = LoraConfig(
|
|
|
|
| 231 |
|
| 232 |
|
| 233 |
def do_inference(cfg, model, tokenizer):
|
| 234 |
+
tokenizer.add_special_tokens({'unk_token': '<unk>'})
|
| 235 |
+
tokenizer.add_special_tokens({'bos_token': '<s>'})
|
| 236 |
+
tokenizer.add_special_tokens({'eos_token': '</s>'})
|
| 237 |
+
|
| 238 |
instruction = "Tell me a joke about dromedaries."
|
| 239 |
input = ""
|
| 240 |
prompt = "Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.\n\n### Instruction:\n{instruction}\n\n### Input:\n{input}\n\n### Response:\n".format(instruction=instruction, input=input)
|
| 241 |
+
batch = tokenizer(prompt, return_tensors="pt", add_special_tokens=True)
|
| 242 |
|
| 243 |
model.eval()
|
| 244 |
with torch.no_grad():
|
| 245 |
+
# gc = GenerationConfig() # TODO swap out and use this
|
| 246 |
+
generated = model.generate(inputs=batch["input_ids"].to("cuda"),
|
| 247 |
do_sample=True, use_cache=True,
|
| 248 |
repetition_penalty=1.1,
|
| 249 |
max_new_tokens=100,
|
|
|
|
| 286 |
math.ceil(len(train_dataset) * cfg.num_epochs / cfg.batch_size)
|
| 287 |
)
|
| 288 |
warmup_steps = min(int(0.03 * total_num_steps), 100)
|
| 289 |
+
logging_steps = max(min(int(0.005 * total_num_steps), 10), 1)
|
| 290 |
save_steps = eval_steps = min(int(0.05 * total_num_steps), 200)
|
| 291 |
|
| 292 |
training_arguments_kwargs = {}
|
|
|
|
| 334 |
},
|
| 335 |
]
|
| 336 |
|
| 337 |
+
trainer_kwargs = {}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 338 |
|
| 339 |
+
if cfg.load_in_8bit and not cfg.load_4bit:
|
| 340 |
+
adam_bnb_optim = bnb.optim.Adam8bit(
|
| 341 |
+
optimizer_grouped_parameters,
|
| 342 |
+
betas=(training_args.adam_beta1, training_args.adam_beta2),
|
| 343 |
+
eps=training_args.adam_epsilon,
|
| 344 |
+
lr=training_args.learning_rate,
|
| 345 |
+
)
|
| 346 |
+
|
| 347 |
+
# TODO optionally use torch.optim.OneCycleLR
|
| 348 |
+
lr_scheduler = transformers.get_cosine_schedule_with_warmup(
|
| 349 |
+
adam_bnb_optim,
|
| 350 |
+
training_args.warmup_steps,
|
| 351 |
+
total_num_steps,
|
| 352 |
+
)
|
| 353 |
+
trainer_kwargs["optimizers"] = (adam_bnb_optim, lr_scheduler)
|
| 354 |
|
|
|
|
| 355 |
if cfg.early_stopping_patience:
|
| 356 |
early_stop_cb = EarlyStoppingCallback(
|
| 357 |
cfg.early_stopping_patience,
|
|
|
|
| 363 |
train_dataset=train_dataset,
|
| 364 |
eval_dataset=eval_dataset,
|
| 365 |
args=training_args,
|
|
|
|
| 366 |
data_collator=transformers.DataCollatorForSeq2Seq(
|
| 367 |
tokenizer, pad_to_multiple_of=8, return_tensors="pt", padding=True
|
| 368 |
),
|
|
|
|
| 423 |
do_inference(cfg, model, tokenizer)
|
| 424 |
return
|
| 425 |
|
| 426 |
+
max_packed_sequence_len = cfg.max_packed_sequence_len if cfg.max_packed_sequence_len else cfg.sequence_len
|
| 427 |
+
max_packed_sequence_len = min(max_packed_sequence_len, cfg.sequence_len) # make sure we don't accidentally set it larger than sequence_len
|
| 428 |
+
ds_hash = str(md5((str(max_packed_sequence_len) + "@" + "|".join(sorted([f"{d.path}:{d.type}" for d in cfg.datasets]))).encode('utf-8')).hexdigest())
|
| 429 |
+
prepared_ds_path = Path(cfg.dataset_prepared_path) / ds_hash if cfg.dataset_prepared_path else Path(DEFAULT_DATASET_PREPARED_PATH) / ds_hash
|
| 430 |
+
if any(prepared_ds_path.glob("*")):
|
| 431 |
logging.info("Loading prepared dataset from disk...")
|
| 432 |
dataset = load_from_disk(cfg.dataset_prepared_path)
|
| 433 |
logging.info("Prepared dataset loaded from disk...")
|
|
|
|
| 435 |
logging.info("Loading raw datasets...")
|
| 436 |
datasets = []
|
| 437 |
for d in cfg.datasets:
|
| 438 |
+
ds_from_hub = False
|
| 439 |
+
try:
|
| 440 |
+
ds = load_dataset(d.path, streaming=True)
|
| 441 |
+
ds_from_hub = True
|
| 442 |
+
except FileNotFoundError:
|
| 443 |
+
pass
|
| 444 |
+
|
| 445 |
+
# prefer local dataset, even if hub exists
|
| 446 |
if Path(d.path).exists():
|
| 447 |
ds: IterableDataset = load_dataset(
|
| 448 |
"json", data_files=d.path, streaming=True, split=None
|
| 449 |
)
|
| 450 |
+
elif ds_from_hub:
|
| 451 |
+
ds = load_dataset(d.path, streaming=True)
|
|
|
|
| 452 |
else:
|
| 453 |
raise Exception("unhandled dataset load")
|
| 454 |
|
|
|
|
| 471 |
ds_wrapper = TokenizedPromptDataset(ds_strategy, ds["train"])
|
| 472 |
datasets.append(ds_wrapper)
|
| 473 |
constant_len_dataset = ConstantLengthDataset(
|
| 474 |
+
tokenizer, datasets, seq_length=max_packed_sequence_len,
|
| 475 |
)
|
| 476 |
logging.info("merging, packing, shuffling, and splitting master dataset")
|
| 477 |
dataset = Dataset.from_list(
|
|
|
|
| 479 |
).train_test_split(test_size=cfg.val_set_size, shuffle=True, seed=42)
|
| 480 |
|
| 481 |
if cfg.local_rank == 0:
|
| 482 |
+
logging.info(f"Saving prepared dataset to disk... {prepared_ds_path}")
|
| 483 |
+
dataset.save_to_disk(prepared_ds_path)
|
|
|
|
|
|
|
|
|
|
| 484 |
|
| 485 |
if prepare_ds_only:
|
| 486 |
logging.info("Finished preparing dataset. Exiting...")
|