Reorganize Docs (#1468)
Browse files- README.md +5 -626
- _quarto.yml +3 -3
- docs/config.qmd +439 -11
- docs/dataset-formats/conversation.qmd +71 -0
- docs/dataset-formats/index.qmd +14 -0
- docs/dataset-formats/inst_tune.qmd +165 -0
- docs/dataset-formats/pretraining.qmd +26 -0
- docs/dataset-formats/template_free.qmd +7 -0
- docs/dataset-formats/tokenized.qmd +12 -0
- docs/fsdp_qlora.qmd +1 -1
- docs/input_output.qmd +6 -4
README.md
CHANGED
|
@@ -35,13 +35,12 @@ Features:
|
|
| 35 |
- [Google Colab](#google-colab)
|
| 36 |
- [Launching on public clouds via SkyPilot](#launching-on-public-clouds-via-skypilot)
|
| 37 |
- [Dataset](#dataset)
|
| 38 |
-
- [How to Add Custom Prompts](#how-to-add-custom-prompts)
|
| 39 |
-
- [How to Use Custom Pretokenized Dataset](#how-to-use-your-custom-pretokenized-dataset)
|
| 40 |
- [Config](#config)
|
| 41 |
- [Train](#train)
|
| 42 |
- [Inference](#inference-playground)
|
| 43 |
- [Merge LORA to Base](#merge-lora-to-base)
|
| 44 |
- [Special Tokens](#special-tokens)
|
|
|
|
| 45 |
- Advanced Topics
|
| 46 |
- [Multipack](./docs/multipack.qmd)<svg width="24" height="24" viewBox="0 0 24 24" xmlns="http://www.w3.org/2000/svg"><path d="M17 13.5v6H5v-12h6m3-3h6v6m0-6-9 9" class="icon_svg-stroke" stroke="#666" stroke-width="1.5" fill="none" fill-rule="evenodd" stroke-linecap="round" stroke-linejoin="round"></path></svg>
|
| 47 |
- [RLHF & DPO](./docs/rlhf.qmd)<svg width="24" height="24" viewBox="0 0 24 24" xmlns="http://www.w3.org/2000/svg"><path d="M17 13.5v6H5v-12h6m3-3h6v6m0-6-9 9" class="icon_svg-stroke" stroke="#666" stroke-width="1.5" fill="none" fill-rule="evenodd" stroke-linecap="round" stroke-linejoin="round"></path></svg>
|
|
@@ -299,186 +298,9 @@ HF_TOKEN=xx BUCKET=<unique-name> sky spot launch axolotl-spot.yaml --env HF_TOKE
|
|
| 299 |
|
| 300 |
### Dataset
|
| 301 |
|
| 302 |
-
Axolotl supports a variety of dataset formats.
|
| 303 |
-
Have dataset(s) in one of the following format (JSONL recommended):
|
| 304 |
|
| 305 |
-
|
| 306 |
-
|
| 307 |
-
- `completion`: raw corpus
|
| 308 |
-
```json
|
| 309 |
-
{"text": "..."}
|
| 310 |
-
```
|
| 311 |
-
|
| 312 |
-
Note: Axolotl usually loads the entire dataset into memory. This will be challenging for large datasets. Use the following config to enable streaming:
|
| 313 |
-
|
| 314 |
-
```yaml
|
| 315 |
-
pretraining_dataset: # hf path only
|
| 316 |
-
```
|
| 317 |
-
|
| 318 |
-
#### Supervised finetuning
|
| 319 |
-
|
| 320 |
-
##### Instruction
|
| 321 |
-
|
| 322 |
-
- `alpaca`: instruction; input(optional)
|
| 323 |
-
```json
|
| 324 |
-
{"instruction": "...", "input": "...", "output": "..."}
|
| 325 |
-
```
|
| 326 |
-
|
| 327 |
-
<details>
|
| 328 |
-
|
| 329 |
-
<summary>See other formats</summary>
|
| 330 |
-
|
| 331 |
-
- `jeopardy`: question and answer
|
| 332 |
-
```json
|
| 333 |
-
{"question": "...", "category": "...", "answer": "..."}
|
| 334 |
-
```
|
| 335 |
-
- `oasst`: instruction
|
| 336 |
-
```json
|
| 337 |
-
{"INSTRUCTION": "...", "RESPONSE": "..."}
|
| 338 |
-
```
|
| 339 |
-
- `gpteacher`: instruction; input(optional)
|
| 340 |
-
```json
|
| 341 |
-
{"instruction": "...", "input": "...", "response": "..."}
|
| 342 |
-
```
|
| 343 |
-
- `reflection`: instruction with reflect; input(optional)
|
| 344 |
-
```json
|
| 345 |
-
{"instruction": "...", "input": "...", "output": "...", "reflection": "...", "corrected": "..."}
|
| 346 |
-
```
|
| 347 |
-
- `explainchoice`: question, choices, (solution OR explanation)
|
| 348 |
-
```json
|
| 349 |
-
{"question": "...", "choices": ["..."], "solution": "...", "explanation": "..."}
|
| 350 |
-
```
|
| 351 |
-
- `concisechoice`: question, choices, (solution OR explanation)
|
| 352 |
-
```json
|
| 353 |
-
{"question": "...", "choices": ["..."], "solution": "...", "explanation": "..."}
|
| 354 |
-
```
|
| 355 |
-
- `summarizetldr`: article and summary
|
| 356 |
-
```json
|
| 357 |
-
{"article": "...", "summary": "..."}
|
| 358 |
-
```
|
| 359 |
-
- `alpaca_chat`: basic instruct for alpaca chat
|
| 360 |
-
```json
|
| 361 |
-
{"instruction": "...", "input": "...", "response": "..."}
|
| 362 |
-
```
|
| 363 |
-
- `alpaca_chat.load_qa`: question and answer for alpaca chat
|
| 364 |
-
```json
|
| 365 |
-
{"question": "...", "answer": "..."}
|
| 366 |
-
```
|
| 367 |
-
- `alpaca_chat.load_concise`: question and answer for alpaca chat, for concise answers
|
| 368 |
-
```json
|
| 369 |
-
{"instruction": "...", "input": "...", "response": "..."}
|
| 370 |
-
```
|
| 371 |
-
- `alpaca_chat.load_camel_ai`: question and answer for alpaca chat, for load_camel_ai
|
| 372 |
-
```json
|
| 373 |
-
{"message_1": "...", "message_2": "..."}
|
| 374 |
-
```
|
| 375 |
-
- `alpaca_w_system.load_open_orca`: support for open orca datasets with included system prompts, instruct
|
| 376 |
-
```json
|
| 377 |
-
{"system_prompt": "...", "question": "...", "response": "..."}
|
| 378 |
-
```
|
| 379 |
-
- `context_qa`: in context question answering from an article
|
| 380 |
-
```json
|
| 381 |
-
{"article": "...", "question": "...", "answer": "..."}
|
| 382 |
-
```
|
| 383 |
-
- `context_qa.load_v2`: in context question answering (alternate)
|
| 384 |
-
```json
|
| 385 |
-
{"context": "...", "question": "...", "answer": "..."}
|
| 386 |
-
```
|
| 387 |
-
- `context_qa.load_404`: in context question answering from an article, with default response for no answer from context
|
| 388 |
-
```json
|
| 389 |
-
{"article": "...", "unanswerable_question": "..."}
|
| 390 |
-
```
|
| 391 |
-
- `creative_acr.load_answer`: instruction and revision
|
| 392 |
-
```json
|
| 393 |
-
{"instruction": "...", "revision": "..."}
|
| 394 |
-
```
|
| 395 |
-
- `creative_acr.load_critique`: critique
|
| 396 |
-
```json
|
| 397 |
-
{"scores": "...", "critiques": "...", "instruction": "...", "answer": "..."}
|
| 398 |
-
```
|
| 399 |
-
- `creative_acr.load_revise`: critique and revise
|
| 400 |
-
```json
|
| 401 |
-
{"scores": "...", "critiques": "...", "instruction": "...", "answer": "...", "revision": "..."}
|
| 402 |
-
```
|
| 403 |
-
- `metharme`: instruction, adds additional eos tokens
|
| 404 |
-
```json
|
| 405 |
-
{"prompt": "...", "generation": "..."}
|
| 406 |
-
```
|
| 407 |
-
|
| 408 |
-
</details>
|
| 409 |
-
|
| 410 |
-
##### Template-Free
|
| 411 |
-
|
| 412 |
-
- `input_output`: template-free prompt construction
|
| 413 |
-
```json
|
| 414 |
-
{"segments": [{"label": true|false, "text": "..."}]}
|
| 415 |
-
```
|
| 416 |
-
|
| 417 |
-
This is a special format that allows you to construct prompts without using templates. This is for advanced users who want more freedom with prompt construction. See [these docs](docs/input_output.qmd) for more details.
|
| 418 |
-
|
| 419 |
-
##### Conversation
|
| 420 |
-
|
| 421 |
-
- `sharegpt`: conversations where `from` is `human`/`gpt`. (optional: first row with role `system` to override default system prompt)
|
| 422 |
-
```json
|
| 423 |
-
{"conversations": [{"from": "...", "value": "..."}]}
|
| 424 |
-
```
|
| 425 |
-
|
| 426 |
-
<details>
|
| 427 |
-
|
| 428 |
-
<summary>See other formats</summary>
|
| 429 |
-
|
| 430 |
-
- `pygmalion`: pygmalion
|
| 431 |
-
```json
|
| 432 |
-
{"conversations": [{"role": "...", "value": "..."}]}
|
| 433 |
-
```
|
| 434 |
-
- `sharegpt.load_role`: conversations where `role` is used instead of `from`
|
| 435 |
-
```json
|
| 436 |
-
{"conversations": [{"role": "...", "value": "..."}]}
|
| 437 |
-
```
|
| 438 |
-
- `sharegpt.load_guanaco`: conversations where `from` is `prompter`/`assistant` instead of default sharegpt
|
| 439 |
-
```json
|
| 440 |
-
{"conversations": [{"from": "...", "value": "..."}]}
|
| 441 |
-
```
|
| 442 |
-
- `sharegpt_jokes`: creates a chat where bot is asked to tell a joke, then explain why the joke is funny
|
| 443 |
-
```json
|
| 444 |
-
{"conversations": [{"title": "...", "text": "...", "explanation": "..."}]}
|
| 445 |
-
```
|
| 446 |
-
|
| 447 |
-
</details>
|
| 448 |
-
|
| 449 |
-
Note: `type: sharegpt` opens a special config `conversation:` that enables conversions to many Conversation types. See dataset section under [all yaml options](#all-yaml-options).
|
| 450 |
-
|
| 451 |
-
#### How to add custom prompts
|
| 452 |
-
|
| 453 |
-
For a dataset that is preprocessed for instruction purposes:
|
| 454 |
-
|
| 455 |
-
```json
|
| 456 |
-
{"input": "...", "output": "..."}
|
| 457 |
-
```
|
| 458 |
-
|
| 459 |
-
You can use this example in your YAML config:
|
| 460 |
-
|
| 461 |
-
```yaml
|
| 462 |
-
datasets:
|
| 463 |
-
- path: repo
|
| 464 |
-
type:
|
| 465 |
-
system_prompt: ""
|
| 466 |
-
field_system: system
|
| 467 |
-
field_instruction: input
|
| 468 |
-
field_output: output
|
| 469 |
-
format: "[INST] {instruction} [/INST]"
|
| 470 |
-
no_input_format: "[INST] {instruction} [/INST]"
|
| 471 |
-
```
|
| 472 |
-
See full config options under [all yaml options](#all-yaml-options).
|
| 473 |
-
|
| 474 |
-
#### How to use your custom pretokenized dataset
|
| 475 |
-
|
| 476 |
-
- Do not pass a `type:`
|
| 477 |
-
- Columns in Dataset must be exactly `input_ids`, `attention_mask`, `labels`
|
| 478 |
-
|
| 479 |
-
```yaml
|
| 480 |
-
- path: ...
|
| 481 |
-
```
|
| 482 |
|
| 483 |
### Config
|
| 484 |
|
|
@@ -563,452 +385,9 @@ See [examples](examples) for quick start. It is recommended to duplicate and mod
|
|
| 563 |
- v_proj
|
| 564 |
```
|
| 565 |
|
| 566 |
-
|
| 567 |
|
| 568 |
-
|
| 569 |
-
|
| 570 |
-
```yaml
|
| 571 |
-
# This is the huggingface model that contains *.pt, *.safetensors, or *.bin files
|
| 572 |
-
# This can also be a relative path to a model on disk
|
| 573 |
-
base_model: ./llama-7b-hf
|
| 574 |
-
# You can specify an ignore pattern if the model repo contains more than 1 model type (*.pt, etc)
|
| 575 |
-
base_model_ignore_patterns:
|
| 576 |
-
# If the base_model repo on hf hub doesn't include configuration .json files,
|
| 577 |
-
# You can set that here, or leave this empty to default to base_model
|
| 578 |
-
base_model_config: ./llama-7b-hf
|
| 579 |
-
# You can specify to choose a specific model revision from huggingface hub
|
| 580 |
-
revision_of_model:
|
| 581 |
-
# Optional tokenizer configuration path in case you want to use a different tokenizer
|
| 582 |
-
# than the one defined in the base model
|
| 583 |
-
tokenizer_config:
|
| 584 |
-
# If you want to specify the type of model to load, AutoModelForCausalLM is a good choice too
|
| 585 |
-
model_type: AutoModelForCausalLM
|
| 586 |
-
# Corresponding tokenizer for the model AutoTokenizer is a good choice
|
| 587 |
-
tokenizer_type: AutoTokenizer
|
| 588 |
-
# Trust remote code for untrusted source
|
| 589 |
-
trust_remote_code:
|
| 590 |
-
# use_fast option for tokenizer loading from_pretrained, default to True
|
| 591 |
-
tokenizer_use_fast:
|
| 592 |
-
# Whether to use the legacy tokenizer setting, defaults to True
|
| 593 |
-
tokenizer_legacy:
|
| 594 |
-
# Resize the model embeddings when new tokens are added to multiples of 32
|
| 595 |
-
# This is reported to improve training speed on some models
|
| 596 |
-
resize_token_embeddings_to_32x:
|
| 597 |
-
|
| 598 |
-
# (Internal use only)
|
| 599 |
-
# Used to identify which the model is based on
|
| 600 |
-
is_falcon_derived_model:
|
| 601 |
-
is_llama_derived_model:
|
| 602 |
-
is_qwen_derived_model:
|
| 603 |
-
# Please note that if you set this to true, `padding_side` will be set to "left" by default
|
| 604 |
-
is_mistral_derived_model:
|
| 605 |
-
|
| 606 |
-
# optional overrides to the base model configuration
|
| 607 |
-
overrides_of_model_config:
|
| 608 |
-
# RoPE Scaling https://github.com/huggingface/transformers/pull/24653
|
| 609 |
-
rope_scaling:
|
| 610 |
-
type: # linear | dynamic
|
| 611 |
-
factor: # float
|
| 612 |
-
|
| 613 |
-
# optional overrides to the bnb 4bit quantization configuration
|
| 614 |
-
# https://huggingface.co/docs/transformers/main/main_classes/quantization#transformers.BitsAndBytesConfig
|
| 615 |
-
bnb_config_kwargs:
|
| 616 |
-
# These are default values
|
| 617 |
-
llm_int8_has_fp16_weight: false
|
| 618 |
-
bnb_4bit_quant_type: nf4
|
| 619 |
-
bnb_4bit_use_double_quant: true
|
| 620 |
-
|
| 621 |
-
|
| 622 |
-
# Whether you are training a 4-bit GPTQ quantized model
|
| 623 |
-
gptq: true
|
| 624 |
-
|
| 625 |
-
# This will attempt to quantize the model down to 8 bits and use adam 8 bit optimizer
|
| 626 |
-
load_in_8bit: true
|
| 627 |
-
# Use bitsandbytes 4 bit
|
| 628 |
-
load_in_4bit:
|
| 629 |
-
|
| 630 |
-
# Use CUDA bf16
|
| 631 |
-
bf16: true # bool or 'full' for `bf16_full_eval`. require >=ampere
|
| 632 |
-
# Use CUDA fp16
|
| 633 |
-
fp16: true
|
| 634 |
-
# Use CUDA tf32
|
| 635 |
-
tf32: true # require >=ampere
|
| 636 |
-
|
| 637 |
-
# No AMP (automatic mixed precision)
|
| 638 |
-
bfloat16: true # require >=ampere
|
| 639 |
-
float16: true
|
| 640 |
-
|
| 641 |
-
# Limit the memory for all available GPUs to this amount (if an integer, expressed in gigabytes); default: unset
|
| 642 |
-
gpu_memory_limit: 20GiB
|
| 643 |
-
# Do the LoRA/PEFT loading on CPU -- this is required if the base model is so large it takes up most or all of the available GPU VRAM, e.g. during a model and LoRA merge
|
| 644 |
-
lora_on_cpu: true
|
| 645 |
-
|
| 646 |
-
# A list of one or more datasets to finetune the model with
|
| 647 |
-
datasets:
|
| 648 |
-
# HuggingFace dataset repo | s3://,gs:// path | "json" for local dataset, make sure to fill data_files
|
| 649 |
-
- path: vicgalle/alpaca-gpt4
|
| 650 |
-
# The type of prompt to use for training. [alpaca, sharegpt, gpteacher, oasst, reflection]
|
| 651 |
-
type: alpaca # format | format:<prompt_style> (chat/instruct) | <prompt_strategies>.load_<load_fn>
|
| 652 |
-
ds_type: # Optional[str] (json|arrow|parquet|text|csv) defines the datatype when path is a file
|
| 653 |
-
data_files: # Optional[str] path to source data files
|
| 654 |
-
shards: # Optional[int] number of shards to split data into
|
| 655 |
-
name: # Optional[str] name of dataset configuration to load
|
| 656 |
-
train_on_split: train # Optional[str] name of dataset split to load from
|
| 657 |
-
|
| 658 |
-
# Optional[str] fastchat conversation type, only used with type: sharegpt
|
| 659 |
-
conversation: # Options (see Conversation 'name'): https://github.com/lm-sys/FastChat/blob/main/fastchat/conversation.py
|
| 660 |
-
field_human: # Optional[str]. Human key to use for conversation.
|
| 661 |
-
field_model: # Optional[str]. Assistant key to use for conversation.
|
| 662 |
-
# Add additional keys from your dataset as input or output roles
|
| 663 |
-
roles:
|
| 664 |
-
input: # Optional[List[str]]. These will be masked based on train_on_input
|
| 665 |
-
output: # Optional[List[str]].
|
| 666 |
-
|
| 667 |
-
# Custom user instruction prompt
|
| 668 |
-
- path: repo
|
| 669 |
-
type:
|
| 670 |
-
# The below are defaults. only set what's needed if you use a different column name.
|
| 671 |
-
system_prompt: ""
|
| 672 |
-
system_format: "{system}"
|
| 673 |
-
field_system: system
|
| 674 |
-
field_instruction: instruction
|
| 675 |
-
field_input: input
|
| 676 |
-
field_output: output
|
| 677 |
-
|
| 678 |
-
# Customizable to be single line or multi-line
|
| 679 |
-
# Use {instruction}/{input} as key to be replaced
|
| 680 |
-
# 'format' can include {input}
|
| 681 |
-
format: |-
|
| 682 |
-
User: {instruction} {input}
|
| 683 |
-
Assistant:
|
| 684 |
-
# 'no_input_format' cannot include {input}
|
| 685 |
-
no_input_format: "{instruction} "
|
| 686 |
-
|
| 687 |
-
# For `completion` datsets only, uses the provided field instead of `text` column
|
| 688 |
-
field:
|
| 689 |
-
|
| 690 |
-
# If false, the datasets will not be shuffled and will keep their original order in `datasets`.
|
| 691 |
-
# The same applies to the `test_datasets` option and the `pretraining_dataset` option. Default is true.
|
| 692 |
-
shuffle_merged_datasets: true
|
| 693 |
-
|
| 694 |
-
# A list of one or more datasets to eval the model with.
|
| 695 |
-
# You can use either test_datasets, or val_set_size, but not both.
|
| 696 |
-
test_datasets:
|
| 697 |
-
- path: /workspace/data/eval.jsonl
|
| 698 |
-
ds_type: json
|
| 699 |
-
# You need to specify a split. For "json" datasets the default split is called "train".
|
| 700 |
-
split: train
|
| 701 |
-
type: completion
|
| 702 |
-
data_files:
|
| 703 |
-
- /workspace/data/eval.jsonl
|
| 704 |
-
|
| 705 |
-
# use RL training: 'dpo', 'ipo', 'kto_pair'
|
| 706 |
-
rl:
|
| 707 |
-
|
| 708 |
-
# Saves the desired chat template to the tokenizer_config.json for easier inferencing
|
| 709 |
-
# Currently supports chatml and inst (mistral/mixtral)
|
| 710 |
-
chat_template: chatml
|
| 711 |
-
# Changes the default system message
|
| 712 |
-
default_system_message: You are a helpful assistant. Please give a long and detailed answer. # Currently only supports chatml.
|
| 713 |
-
# Axolotl attempts to save the dataset as an arrow after packing the data together so
|
| 714 |
-
# subsequent training attempts load faster, relative path
|
| 715 |
-
dataset_prepared_path: data/last_run_prepared
|
| 716 |
-
# Push prepared dataset to hub
|
| 717 |
-
push_dataset_to_hub: # repo path
|
| 718 |
-
# The maximum number of processes to use while preprocessing your input dataset. This defaults to `os.cpu_count()`
|
| 719 |
-
# if not set.
|
| 720 |
-
dataset_processes: # defaults to os.cpu_count() if not set
|
| 721 |
-
# Keep dataset in memory while preprocessing
|
| 722 |
-
# Only needed if cached dataset is taking too much storage
|
| 723 |
-
dataset_keep_in_memory:
|
| 724 |
-
# push checkpoints to hub
|
| 725 |
-
hub_model_id: # private repo path to push finetuned model
|
| 726 |
-
# how to push checkpoints to hub
|
| 727 |
-
# https://huggingface.co/docs/transformers/v4.31.0/en/main_classes/trainer#transformers.TrainingArguments.hub_strategy
|
| 728 |
-
hub_strategy:
|
| 729 |
-
# Whether to use hf `use_auth_token` for loading datasets. Useful for fetching private datasets
|
| 730 |
-
# Required to be true when used in combination with `push_dataset_to_hub`
|
| 731 |
-
hf_use_auth_token: # boolean
|
| 732 |
-
# How much of the dataset to set aside as evaluation. 1 = 100%, 0.50 = 50%, etc. 0 for no eval.
|
| 733 |
-
val_set_size: 0.04
|
| 734 |
-
# Num shards for whole dataset
|
| 735 |
-
dataset_shard_num:
|
| 736 |
-
# Index of shard to use for whole dataset
|
| 737 |
-
dataset_shard_idx:
|
| 738 |
-
|
| 739 |
-
# The maximum length of an input to train with, this should typically be less than 2048
|
| 740 |
-
# as most models have a token/context limit of 2048
|
| 741 |
-
sequence_len: 2048
|
| 742 |
-
# Pad inputs so each step uses constant sized buffers
|
| 743 |
-
# This will reduce memory fragmentation and may prevent OOMs, by re-using memory more efficiently
|
| 744 |
-
pad_to_sequence_len:
|
| 745 |
-
# Use efficient multi-packing with block diagonal attention and per sequence position_ids. Recommend set to 'true'
|
| 746 |
-
sample_packing:
|
| 747 |
-
# Set to 'false' if getting errors during eval with sample_packing on.
|
| 748 |
-
eval_sample_packing:
|
| 749 |
-
# You can set these packing optimizations AFTER starting a training at least once.
|
| 750 |
-
# The trainer will provide recommended values for these values.
|
| 751 |
-
sample_packing_eff_est:
|
| 752 |
-
total_num_tokens:
|
| 753 |
-
|
| 754 |
-
# Passed through to transformers when loading the model when launched without accelerate
|
| 755 |
-
# Use `sequential` when training w/ model parallelism to limit memory
|
| 756 |
-
device_map:
|
| 757 |
-
# Defines the max memory usage per gpu on the system. Passed through to transformers when loading the model.
|
| 758 |
-
max_memory:
|
| 759 |
-
|
| 760 |
-
# If you want to use 'lora' or 'qlora' or leave blank to train all parameters in original model
|
| 761 |
-
adapter: lora
|
| 762 |
-
# If you already have a lora model trained that you want to load, put that here.
|
| 763 |
-
# This means after training, if you want to test the model, you should set this to the value of `output_dir`.
|
| 764 |
-
# Note that if you merge an adapter to the base model, a new subdirectory `merged` will be created under the `output_dir`.
|
| 765 |
-
lora_model_dir:
|
| 766 |
-
|
| 767 |
-
# LoRA hyperparameters
|
| 768 |
-
# For more details about the following options, see:
|
| 769 |
-
# https://www.anyscale.com/blog/fine-tuning-llms-lora-or-full-parameter-an-in-depth-analysis-with-llama-2
|
| 770 |
-
lora_r: 8
|
| 771 |
-
lora_alpha: 16
|
| 772 |
-
lora_dropout: 0.05
|
| 773 |
-
lora_target_modules:
|
| 774 |
-
- q_proj
|
| 775 |
-
- v_proj
|
| 776 |
-
# - k_proj
|
| 777 |
-
# - o_proj
|
| 778 |
-
# - gate_proj
|
| 779 |
-
# - down_proj
|
| 780 |
-
# - up_proj
|
| 781 |
-
lora_target_linear: # If true, will target all linear modules
|
| 782 |
-
peft_layers_to_transform: # The layer indices to transform, otherwise, apply to all layers
|
| 783 |
-
|
| 784 |
-
# If you added new tokens to the tokenizer, you may need to save some LoRA modules because they need to know the new tokens.
|
| 785 |
-
# For LLaMA and Mistral, you need to save `embed_tokens` and `lm_head`. It may vary for other models.
|
| 786 |
-
# `embed_tokens` converts tokens to embeddings, and `lm_head` converts embeddings to token probabilities.
|
| 787 |
-
# https://github.com/huggingface/peft/issues/334#issuecomment-1561727994
|
| 788 |
-
lora_modules_to_save:
|
| 789 |
-
# - embed_tokens
|
| 790 |
-
# - lm_head
|
| 791 |
-
|
| 792 |
-
lora_fan_in_fan_out: false
|
| 793 |
-
|
| 794 |
-
peft:
|
| 795 |
-
# Configuration options for loftq initialization for LoRA
|
| 796 |
-
# https://huggingface.co/docs/peft/developer_guides/quantization#loftq-initialization
|
| 797 |
-
loftq_config:
|
| 798 |
-
loftq_bits: # typically 4 bits
|
| 799 |
-
|
| 800 |
-
# ReLoRA configuration
|
| 801 |
-
# Must use either 'lora' or 'qlora' adapter, and does not support fsdp or deepspeed
|
| 802 |
-
relora_steps: # Number of steps per ReLoRA restart
|
| 803 |
-
relora_warmup_steps: # Number of per-restart warmup steps
|
| 804 |
-
relora_anneal_steps: # Number of anneal steps for each relora cycle
|
| 805 |
-
relora_prune_ratio: # threshold for optimizer magnitude when pruning
|
| 806 |
-
relora_cpu_offload: # True to perform lora weight merges on cpu during restarts, for modest gpu memory savings
|
| 807 |
-
|
| 808 |
-
# wandb configuration if you're using it
|
| 809 |
-
# Make sure your `WANDB_API_KEY` environment variable is set (recommended) or you login to wandb with `wandb login`.
|
| 810 |
-
wandb_mode: # "offline" to save run metadata locally and not sync to the server, "disabled" to turn off wandb
|
| 811 |
-
wandb_project: # Your wandb project name
|
| 812 |
-
wandb_entity: # A wandb Team name if using a Team
|
| 813 |
-
wandb_watch:
|
| 814 |
-
wandb_name: # Set the name of your wandb run
|
| 815 |
-
wandb_run_id: # Set the ID of your wandb run
|
| 816 |
-
wandb_log_model: # "checkpoint" to log model to wandb Artifacts every `save_steps` or "end" to log only at the end of training
|
| 817 |
-
|
| 818 |
-
# mlflow configuration if you're using it
|
| 819 |
-
mlflow_tracking_uri: # URI to mlflow
|
| 820 |
-
mlflow_experiment_name: # Your experiment name
|
| 821 |
-
hf_mlflow_log_artifacts: # set to true to copy each saved checkpoint on each save to mlflow artifact registry
|
| 822 |
-
|
| 823 |
-
# Where to save the full-finetuned model to
|
| 824 |
-
output_dir: ./completed-model
|
| 825 |
-
|
| 826 |
-
# Whether to use torch.compile and which backend to use
|
| 827 |
-
torch_compile: # bool
|
| 828 |
-
torch_compile_backend: # Optional[str]
|
| 829 |
-
|
| 830 |
-
# Training hyperparameters
|
| 831 |
-
|
| 832 |
-
# If greater than 1, backpropagation will be skipped and the gradients will be accumulated for the given number of steps.
|
| 833 |
-
gradient_accumulation_steps: 1
|
| 834 |
-
# The number of samples to include in each batch. This is the number of samples sent to each GPU.
|
| 835 |
-
micro_batch_size: 2
|
| 836 |
-
eval_batch_size:
|
| 837 |
-
num_epochs: 4
|
| 838 |
-
warmup_steps: 100 # cannot use with warmup_ratio
|
| 839 |
-
warmup_ratio: 0.05 # cannot use with warmup_steps
|
| 840 |
-
learning_rate: 0.00003
|
| 841 |
-
lr_quadratic_warmup:
|
| 842 |
-
logging_steps:
|
| 843 |
-
eval_steps: # Leave empty to eval at each epoch, integers for every N steps. decimal for fraction of total steps
|
| 844 |
-
evals_per_epoch: # number of times per epoch to run evals, mutually exclusive with eval_steps
|
| 845 |
-
save_strategy: # Set to `no` to skip checkpoint saves
|
| 846 |
-
save_steps: # Leave empty to save at each epoch
|
| 847 |
-
saves_per_epoch: # number of times per epoch to save a checkpoint, mutually exclusive with save_steps
|
| 848 |
-
save_total_limit: # Checkpoints saved at a time
|
| 849 |
-
# Maximum number of iterations to train for. It precedes num_epochs which means that
|
| 850 |
-
# if both are set, num_epochs will not be guaranteed.
|
| 851 |
-
# e.g., when 1 epoch is 1000 steps => `num_epochs: 2` and `max_steps: 100` will train for 100 steps
|
| 852 |
-
max_steps:
|
| 853 |
-
|
| 854 |
-
eval_table_size: # Approximate number of predictions sent to wandb depending on batch size. Enabled above 0. Default is 0
|
| 855 |
-
eval_max_new_tokens: # Total number of tokens generated for predictions sent to wandb. Default is 128
|
| 856 |
-
eval_causal_lm_metrics: # HF evaluate metrics used during evaluation. Default is ["sacrebleu", "comet", "ter", chrf]
|
| 857 |
-
|
| 858 |
-
loss_watchdog_threshold: # High loss value, indicating the learning has broken down (a good estimate is ~2 times the loss at the start of training)
|
| 859 |
-
loss_watchdog_patience: # Number of high-loss steps in a row before the trainer aborts (default: 3)
|
| 860 |
-
|
| 861 |
-
# Save model as safetensors (require safetensors package)
|
| 862 |
-
save_safetensors:
|
| 863 |
-
|
| 864 |
-
# Whether to mask out or include the human's prompt from the training labels
|
| 865 |
-
train_on_inputs: false
|
| 866 |
-
# Group similarly sized data to minimize padding.
|
| 867 |
-
# May be slower to start, as it must download and sort the entire dataset.
|
| 868 |
-
# Note that training loss may have an oscillating pattern with this enabled.
|
| 869 |
-
group_by_length: false
|
| 870 |
-
|
| 871 |
-
# Whether to use gradient checkpointing https://huggingface.co/docs/transformers/v4.18.0/en/performance#gradient-checkpointing
|
| 872 |
-
gradient_checkpointing: false
|
| 873 |
-
# additional kwargs to pass to the trainer for gradient checkpointing
|
| 874 |
-
# gradient_checkpointing_kwargs:
|
| 875 |
-
# use_reentrant: true
|
| 876 |
-
|
| 877 |
-
# Stop training after this many evaluation losses have increased in a row
|
| 878 |
-
# https://huggingface.co/transformers/v4.2.2/_modules/transformers/trainer_callback.html#EarlyStoppingCallback
|
| 879 |
-
early_stopping_patience: 3
|
| 880 |
-
|
| 881 |
-
# Specify a scheduler and kwargs to use with the optimizer
|
| 882 |
-
lr_scheduler: # 'one_cycle' | 'log_sweep' | empty for cosine
|
| 883 |
-
lr_scheduler_kwargs:
|
| 884 |
-
cosine_min_lr_ratio: # decay lr to some percentage of the peak lr, e.g. cosine_min_lr_ratio=0.1 for 10% of peak lr
|
| 885 |
-
cosine_constant_lr_ratio: # freeze lr at some percentage of the step, e.g. cosine_constant_lr_ratio=0.8 means start cosine_min_lr at 80% of training step (https://arxiv.org/pdf/2308.04014.pdf)
|
| 886 |
-
|
| 887 |
-
# For one_cycle optim
|
| 888 |
-
lr_div_factor: # Learning rate div factor
|
| 889 |
-
|
| 890 |
-
# Specify optimizer
|
| 891 |
-
# Valid values are driven by the Transformers OptimizerNames class, see:
|
| 892 |
-
# https://github.com/huggingface/transformers/blob/95b374952dc27d8511541d6f5a4e22c9ec11fb24/src/transformers/training_args.py#L134
|
| 893 |
-
#
|
| 894 |
-
# Note that not all optimizers may be available in your environment, ex: 'adamw_anyprecision' is part of
|
| 895 |
-
# torchdistx, 'adamw_bnb_8bit' is part of bnb.optim.Adam8bit, etc. When in doubt, it is recommended to start with the optimizer used
|
| 896 |
-
# in the examples/ for your model and fine-tuning use case.
|
| 897 |
-
#
|
| 898 |
-
# Valid values for 'optimizer' include:
|
| 899 |
-
# - adamw_hf
|
| 900 |
-
# - adamw_torch
|
| 901 |
-
# - adamw_torch_fused
|
| 902 |
-
# - adamw_torch_xla
|
| 903 |
-
# - adamw_apex_fused
|
| 904 |
-
# - adafactor
|
| 905 |
-
# - adamw_anyprecision
|
| 906 |
-
# - sgd
|
| 907 |
-
# - adagrad
|
| 908 |
-
# - adamw_bnb_8bit
|
| 909 |
-
# - lion_8bit
|
| 910 |
-
# - lion_32bit
|
| 911 |
-
# - paged_adamw_32bit
|
| 912 |
-
# - paged_adamw_8bit
|
| 913 |
-
# - paged_lion_32bit
|
| 914 |
-
# - paged_lion_8bit
|
| 915 |
-
# - galore_adamw
|
| 916 |
-
# - galore_adamw_8bit
|
| 917 |
-
# - galore_adafactor
|
| 918 |
-
# - galore_adamw_layerwise
|
| 919 |
-
# - galore_adamw_8bit_layerwise
|
| 920 |
-
# - galore_adafactor_layerwise
|
| 921 |
-
optimizer:
|
| 922 |
-
# Dictionary of arguments to pass to the optimizer
|
| 923 |
-
optim_args:
|
| 924 |
-
# For Galore Optimizers the following optim_args are available
|
| 925 |
-
# rank: # type: int
|
| 926 |
-
# update_proj_gap # type: int
|
| 927 |
-
# scale # type: float
|
| 928 |
-
# proj_type: # type: str, default = std
|
| 929 |
-
|
| 930 |
-
# The target modules to optimize, i.e. the module names that you would like to train, right now this is used only for GaLore algorithm
|
| 931 |
-
optim_target_modules:
|
| 932 |
-
# - self_attn # for llama
|
| 933 |
-
# - mlp
|
| 934 |
-
|
| 935 |
-
# Specify weight decay
|
| 936 |
-
weight_decay:
|
| 937 |
-
# adamw hyperparams
|
| 938 |
-
adam_beta1:
|
| 939 |
-
adam_beta2:
|
| 940 |
-
adam_epsilon:
|
| 941 |
-
# Gradient clipping max norm
|
| 942 |
-
max_grad_norm:
|
| 943 |
-
|
| 944 |
-
# Augmentation techniques
|
| 945 |
-
# NEFT https://arxiv.org/abs/2310.05914, set this to a number (paper default is 5) to add noise to embeddings
|
| 946 |
-
# currently only supported on Llama and Mistral
|
| 947 |
-
neftune_noise_alpha:
|
| 948 |
-
|
| 949 |
-
# Whether to bettertransformers
|
| 950 |
-
flash_optimum:
|
| 951 |
-
# Whether to use xformers attention patch https://github.com/facebookresearch/xformers:
|
| 952 |
-
xformers_attention:
|
| 953 |
-
# Whether to use flash attention patch https://github.com/Dao-AILab/flash-attention:
|
| 954 |
-
flash_attention:
|
| 955 |
-
flash_attn_cross_entropy: # Whether to use flash-attention cross entropy implementation - advanced use only
|
| 956 |
-
flash_attn_rms_norm: # Whether to use flash-attention rms norm implementation - advanced use only
|
| 957 |
-
flash_attn_fuse_qkv: # Whether to fuse QKV into a single operation
|
| 958 |
-
flash_attn_fuse_mlp: # Whether to fuse part of the MLP into a single operation
|
| 959 |
-
# Whether to use scaled-dot-product attention
|
| 960 |
-
# https://pytorch.org/docs/stable/generated/torch.nn.functional.scaled_dot_product_attention.html
|
| 961 |
-
sdp_attention:
|
| 962 |
-
# Shifted-sparse attention (only llama) - https://arxiv.org/pdf/2309.12307.pdf
|
| 963 |
-
s2_attention:
|
| 964 |
-
# Resume from a specific checkpoint dir
|
| 965 |
-
resume_from_checkpoint:
|
| 966 |
-
# If resume_from_checkpoint isn't set and you simply want it to start where it left off.
|
| 967 |
-
# Be careful with this being turned on between different models.
|
| 968 |
-
auto_resume_from_checkpoints: false
|
| 969 |
-
|
| 970 |
-
# Don't mess with this, it's here for accelerate and torchrun
|
| 971 |
-
local_rank:
|
| 972 |
-
|
| 973 |
-
# Add or change special tokens.
|
| 974 |
-
# If you add tokens here, you don't need to add them to the `tokens` list.
|
| 975 |
-
special_tokens:
|
| 976 |
-
# bos_token: "<s>"
|
| 977 |
-
# eos_token: "</s>"
|
| 978 |
-
# unk_token: "<unk>"
|
| 979 |
-
|
| 980 |
-
# Add extra tokens.
|
| 981 |
-
tokens:
|
| 982 |
-
|
| 983 |
-
# FSDP
|
| 984 |
-
fsdp:
|
| 985 |
-
fsdp_config:
|
| 986 |
-
|
| 987 |
-
# Deepspeed config path. e.g., deepspeed_configs/zero3.json
|
| 988 |
-
deepspeed:
|
| 989 |
-
|
| 990 |
-
# Advanced DDP Arguments
|
| 991 |
-
ddp_timeout:
|
| 992 |
-
ddp_bucket_cap_mb:
|
| 993 |
-
ddp_broadcast_buffers:
|
| 994 |
-
|
| 995 |
-
# Path to torch distx for optim 'adamw_anyprecision'
|
| 996 |
-
torchdistx_path:
|
| 997 |
-
|
| 998 |
-
# Set to HF dataset for type: 'completion' for streaming instead of pre-tokenize
|
| 999 |
-
pretraining_dataset:
|
| 1000 |
-
|
| 1001 |
-
# Debug mode
|
| 1002 |
-
debug:
|
| 1003 |
-
|
| 1004 |
-
# Seed
|
| 1005 |
-
seed:
|
| 1006 |
-
|
| 1007 |
-
# Allow overwrite yml config using from cli
|
| 1008 |
-
strict:
|
| 1009 |
-
```
|
| 1010 |
-
|
| 1011 |
-
</details>
|
| 1012 |
|
| 1013 |
<details>
|
| 1014 |
<summary> Understanding of batch size and gradient accumulation steps </summary>
|
|
|
|
| 35 |
- [Google Colab](#google-colab)
|
| 36 |
- [Launching on public clouds via SkyPilot](#launching-on-public-clouds-via-skypilot)
|
| 37 |
- [Dataset](#dataset)
|
|
|
|
|
|
|
| 38 |
- [Config](#config)
|
| 39 |
- [Train](#train)
|
| 40 |
- [Inference](#inference-playground)
|
| 41 |
- [Merge LORA to Base](#merge-lora-to-base)
|
| 42 |
- [Special Tokens](#special-tokens)
|
| 43 |
+
- [All Config Options](#all-config-options)
|
| 44 |
- Advanced Topics
|
| 45 |
- [Multipack](./docs/multipack.qmd)<svg width="24" height="24" viewBox="0 0 24 24" xmlns="http://www.w3.org/2000/svg"><path d="M17 13.5v6H5v-12h6m3-3h6v6m0-6-9 9" class="icon_svg-stroke" stroke="#666" stroke-width="1.5" fill="none" fill-rule="evenodd" stroke-linecap="round" stroke-linejoin="round"></path></svg>
|
| 46 |
- [RLHF & DPO](./docs/rlhf.qmd)<svg width="24" height="24" viewBox="0 0 24 24" xmlns="http://www.w3.org/2000/svg"><path d="M17 13.5v6H5v-12h6m3-3h6v6m0-6-9 9" class="icon_svg-stroke" stroke="#666" stroke-width="1.5" fill="none" fill-rule="evenodd" stroke-linecap="round" stroke-linejoin="round"></path></svg>
|
|
|
|
| 298 |
|
| 299 |
### Dataset
|
| 300 |
|
| 301 |
+
Axolotl supports a variety of dataset formats. It is recommended to use a JSONL. The schema of the JSONL depends upon the task and the prompt template you wish to use. Instead of a JSONL, you can also use a HuggingFace dataset with columns for each JSONL field.
|
|
|
|
| 302 |
|
| 303 |
+
See [these docs](https://openaccess-ai-collective.github.io/axolotl/docs/dataset-formats/) for more information on how to use different dataset formats.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 304 |
|
| 305 |
### Config
|
| 306 |
|
|
|
|
| 385 |
- v_proj
|
| 386 |
```
|
| 387 |
|
| 388 |
+
#### All Config Options
|
| 389 |
|
| 390 |
+
See [these docs](docs/config.qmd) for all config options.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 391 |
|
| 392 |
<details>
|
| 393 |
<summary> Understanding of batch size and gradient accumulation steps </summary>
|
_quarto.yml
CHANGED
|
@@ -30,20 +30,20 @@ website:
|
|
| 30 |
# TODO Edit folder structure after we have more docs.
|
| 31 |
- docs/debugging.qmd
|
| 32 |
- docs/multipack.qmd
|
| 33 |
-
- docs/
|
| 34 |
- docs/input_output.qmd
|
| 35 |
- docs/rlhf.qmd
|
| 36 |
- docs/nccl.qmd
|
| 37 |
- docs/mac.qmd
|
| 38 |
- docs/multi-node.qmd
|
|
|
|
|
|
|
| 39 |
- section: "Reference"
|
| 40 |
contents:
|
| 41 |
- docs/config.qmd
|
| 42 |
- docs/faq.qmd
|
| 43 |
|
| 44 |
|
| 45 |
-
|
| 46 |
-
|
| 47 |
format:
|
| 48 |
html:
|
| 49 |
theme: materia
|
|
|
|
| 30 |
# TODO Edit folder structure after we have more docs.
|
| 31 |
- docs/debugging.qmd
|
| 32 |
- docs/multipack.qmd
|
| 33 |
+
- docs/fsdp_qlora.qmd
|
| 34 |
- docs/input_output.qmd
|
| 35 |
- docs/rlhf.qmd
|
| 36 |
- docs/nccl.qmd
|
| 37 |
- docs/mac.qmd
|
| 38 |
- docs/multi-node.qmd
|
| 39 |
+
- section: "Dataset Formats"
|
| 40 |
+
contents: docs/dataset-formats/*
|
| 41 |
- section: "Reference"
|
| 42 |
contents:
|
| 43 |
- docs/config.qmd
|
| 44 |
- docs/faq.qmd
|
| 45 |
|
| 46 |
|
|
|
|
|
|
|
| 47 |
format:
|
| 48 |
html:
|
| 49 |
theme: materia
|
docs/config.qmd
CHANGED
|
@@ -3,15 +3,443 @@ title: Config options
|
|
| 3 |
description: A complete list of all configuration options.
|
| 4 |
---
|
| 5 |
|
| 6 |
-
```
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
#
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 17 |
```
|
|
|
|
| 3 |
description: A complete list of all configuration options.
|
| 4 |
---
|
| 5 |
|
| 6 |
+
```yaml
|
| 7 |
+
# This is the huggingface model that contains *.pt, *.safetensors, or *.bin files
|
| 8 |
+
# This can also be a relative path to a model on disk
|
| 9 |
+
base_model: ./llama-7b-hf
|
| 10 |
+
# You can specify an ignore pattern if the model repo contains more than 1 model type (*.pt, etc)
|
| 11 |
+
base_model_ignore_patterns:
|
| 12 |
+
# If the base_model repo on hf hub doesn't include configuration .json files,
|
| 13 |
+
# You can set that here, or leave this empty to default to base_model
|
| 14 |
+
base_model_config: ./llama-7b-hf
|
| 15 |
+
# You can specify to choose a specific model revision from huggingface hub
|
| 16 |
+
revision_of_model:
|
| 17 |
+
# Optional tokenizer configuration path in case you want to use a different tokenizer
|
| 18 |
+
# than the one defined in the base model
|
| 19 |
+
tokenizer_config:
|
| 20 |
+
# If you want to specify the type of model to load, AutoModelForCausalLM is a good choice too
|
| 21 |
+
model_type: AutoModelForCausalLM
|
| 22 |
+
# Corresponding tokenizer for the model AutoTokenizer is a good choice
|
| 23 |
+
tokenizer_type: AutoTokenizer
|
| 24 |
+
# Trust remote code for untrusted source
|
| 25 |
+
trust_remote_code:
|
| 26 |
+
# use_fast option for tokenizer loading from_pretrained, default to True
|
| 27 |
+
tokenizer_use_fast:
|
| 28 |
+
# Whether to use the legacy tokenizer setting, defaults to True
|
| 29 |
+
tokenizer_legacy:
|
| 30 |
+
# Resize the model embeddings when new tokens are added to multiples of 32
|
| 31 |
+
# This is reported to improve training speed on some models
|
| 32 |
+
resize_token_embeddings_to_32x:
|
| 33 |
+
|
| 34 |
+
# (Internal use only)
|
| 35 |
+
# Used to identify which the model is based on
|
| 36 |
+
is_falcon_derived_model:
|
| 37 |
+
is_llama_derived_model:
|
| 38 |
+
is_qwen_derived_model:
|
| 39 |
+
# Please note that if you set this to true, `padding_side` will be set to "left" by default
|
| 40 |
+
is_mistral_derived_model:
|
| 41 |
+
|
| 42 |
+
# optional overrides to the base model configuration
|
| 43 |
+
overrides_of_model_config:
|
| 44 |
+
# RoPE Scaling https://github.com/huggingface/transformers/pull/24653
|
| 45 |
+
rope_scaling:
|
| 46 |
+
type: # linear | dynamic
|
| 47 |
+
factor: # float
|
| 48 |
+
|
| 49 |
+
# optional overrides to the bnb 4bit quantization configuration
|
| 50 |
+
# https://huggingface.co/docs/transformers/main/main_classes/quantization#transformers.BitsAndBytesConfig
|
| 51 |
+
bnb_config_kwargs:
|
| 52 |
+
# These are default values
|
| 53 |
+
llm_int8_has_fp16_weight: false
|
| 54 |
+
bnb_4bit_quant_type: nf4
|
| 55 |
+
bnb_4bit_use_double_quant: true
|
| 56 |
+
|
| 57 |
+
|
| 58 |
+
# Whether you are training a 4-bit GPTQ quantized model
|
| 59 |
+
gptq: true
|
| 60 |
+
|
| 61 |
+
# This will attempt to quantize the model down to 8 bits and use adam 8 bit optimizer
|
| 62 |
+
load_in_8bit: true
|
| 63 |
+
# Use bitsandbytes 4 bit
|
| 64 |
+
load_in_4bit:
|
| 65 |
+
|
| 66 |
+
# Use CUDA bf16
|
| 67 |
+
bf16: true # bool or 'full' for `bf16_full_eval`. require >=ampere
|
| 68 |
+
# Use CUDA fp16
|
| 69 |
+
fp16: true
|
| 70 |
+
# Use CUDA tf32
|
| 71 |
+
tf32: true # require >=ampere
|
| 72 |
+
|
| 73 |
+
# No AMP (automatic mixed precision)
|
| 74 |
+
bfloat16: true # require >=ampere
|
| 75 |
+
float16: true
|
| 76 |
+
|
| 77 |
+
# Limit the memory for all available GPUs to this amount (if an integer, expressed in gigabytes); default: unset
|
| 78 |
+
gpu_memory_limit: 20GiB
|
| 79 |
+
# Do the LoRA/PEFT loading on CPU -- this is required if the base model is so large it takes up most or all of the available GPU VRAM, e.g. during a model and LoRA merge
|
| 80 |
+
lora_on_cpu: true
|
| 81 |
+
|
| 82 |
+
# A list of one or more datasets to finetune the model with
|
| 83 |
+
datasets:
|
| 84 |
+
# HuggingFace dataset repo | s3://,gs:// path | "json" for local dataset, make sure to fill data_files
|
| 85 |
+
- path: vicgalle/alpaca-gpt4
|
| 86 |
+
# The type of prompt to use for training. [alpaca, sharegpt, gpteacher, oasst, reflection]
|
| 87 |
+
type: alpaca # format | format:<prompt_style> (chat/instruct) | <prompt_strategies>.load_<load_fn>
|
| 88 |
+
ds_type: # Optional[str] (json|arrow|parquet|text|csv) defines the datatype when path is a file
|
| 89 |
+
data_files: # Optional[str] path to source data files
|
| 90 |
+
shards: # Optional[int] number of shards to split data into
|
| 91 |
+
name: # Optional[str] name of dataset configuration to load
|
| 92 |
+
train_on_split: train # Optional[str] name of dataset split to load from
|
| 93 |
+
|
| 94 |
+
# Optional[str] fastchat conversation type, only used with type: sharegpt
|
| 95 |
+
conversation: # Options (see Conversation 'name'): https://github.com/lm-sys/FastChat/blob/main/fastchat/conversation.py
|
| 96 |
+
field_human: # Optional[str]. Human key to use for conversation.
|
| 97 |
+
field_model: # Optional[str]. Assistant key to use for conversation.
|
| 98 |
+
# Add additional keys from your dataset as input or output roles
|
| 99 |
+
roles:
|
| 100 |
+
input: # Optional[List[str]]. These will be masked based on train_on_input
|
| 101 |
+
output: # Optional[List[str]].
|
| 102 |
+
|
| 103 |
+
# Custom user instruction prompt
|
| 104 |
+
- path: repo
|
| 105 |
+
type:
|
| 106 |
+
# The below are defaults. only set what's needed if you use a different column name.
|
| 107 |
+
system_prompt: ""
|
| 108 |
+
system_format: "{system}"
|
| 109 |
+
field_system: system
|
| 110 |
+
field_instruction: instruction
|
| 111 |
+
field_input: input
|
| 112 |
+
field_output: output
|
| 113 |
+
|
| 114 |
+
# Customizable to be single line or multi-line
|
| 115 |
+
# Use {instruction}/{input} as key to be replaced
|
| 116 |
+
# 'format' can include {input}
|
| 117 |
+
format: |-
|
| 118 |
+
User: {instruction} {input}
|
| 119 |
+
Assistant:
|
| 120 |
+
# 'no_input_format' cannot include {input}
|
| 121 |
+
no_input_format: "{instruction} "
|
| 122 |
+
|
| 123 |
+
# For `completion` datsets only, uses the provided field instead of `text` column
|
| 124 |
+
field:
|
| 125 |
+
|
| 126 |
+
# If false, the datasets will not be shuffled and will keep their original order in `datasets`.
|
| 127 |
+
# The same applies to the `test_datasets` option and the `pretraining_dataset` option. Default is true.
|
| 128 |
+
shuffle_merged_datasets: true
|
| 129 |
+
|
| 130 |
+
# A list of one or more datasets to eval the model with.
|
| 131 |
+
# You can use either test_datasets, or val_set_size, but not both.
|
| 132 |
+
test_datasets:
|
| 133 |
+
- path: /workspace/data/eval.jsonl
|
| 134 |
+
ds_type: json
|
| 135 |
+
# You need to specify a split. For "json" datasets the default split is called "train".
|
| 136 |
+
split: train
|
| 137 |
+
type: completion
|
| 138 |
+
data_files:
|
| 139 |
+
- /workspace/data/eval.jsonl
|
| 140 |
+
|
| 141 |
+
# use RL training: 'dpo', 'ipo', 'kto_pair'
|
| 142 |
+
rl:
|
| 143 |
+
|
| 144 |
+
# Saves the desired chat template to the tokenizer_config.json for easier inferencing
|
| 145 |
+
# Currently supports chatml and inst (mistral/mixtral)
|
| 146 |
+
chat_template: chatml
|
| 147 |
+
# Changes the default system message
|
| 148 |
+
default_system_message: You are a helpful assistant. Please give a long and detailed answer. # Currently only supports chatml.
|
| 149 |
+
# Axolotl attempts to save the dataset as an arrow after packing the data together so
|
| 150 |
+
# subsequent training attempts load faster, relative path
|
| 151 |
+
dataset_prepared_path: data/last_run_prepared
|
| 152 |
+
# Push prepared dataset to hub
|
| 153 |
+
push_dataset_to_hub: # repo path
|
| 154 |
+
# The maximum number of processes to use while preprocessing your input dataset. This defaults to `os.cpu_count()`
|
| 155 |
+
# if not set.
|
| 156 |
+
dataset_processes: # defaults to os.cpu_count() if not set
|
| 157 |
+
# Keep dataset in memory while preprocessing
|
| 158 |
+
# Only needed if cached dataset is taking too much storage
|
| 159 |
+
dataset_keep_in_memory:
|
| 160 |
+
# push checkpoints to hub
|
| 161 |
+
hub_model_id: # private repo path to push finetuned model
|
| 162 |
+
# how to push checkpoints to hub
|
| 163 |
+
# https://huggingface.co/docs/transformers/v4.31.0/en/main_classes/trainer#transformers.TrainingArguments.hub_strategy
|
| 164 |
+
hub_strategy:
|
| 165 |
+
# Whether to use hf `use_auth_token` for loading datasets. Useful for fetching private datasets
|
| 166 |
+
# Required to be true when used in combination with `push_dataset_to_hub`
|
| 167 |
+
hf_use_auth_token: # boolean
|
| 168 |
+
# How much of the dataset to set aside as evaluation. 1 = 100%, 0.50 = 50%, etc. 0 for no eval.
|
| 169 |
+
val_set_size: 0.04
|
| 170 |
+
# Num shards for whole dataset
|
| 171 |
+
dataset_shard_num:
|
| 172 |
+
# Index of shard to use for whole dataset
|
| 173 |
+
dataset_shard_idx:
|
| 174 |
+
|
| 175 |
+
# The maximum length of an input to train with, this should typically be less than 2048
|
| 176 |
+
# as most models have a token/context limit of 2048
|
| 177 |
+
sequence_len: 2048
|
| 178 |
+
# Pad inputs so each step uses constant sized buffers
|
| 179 |
+
# This will reduce memory fragmentation and may prevent OOMs, by re-using memory more efficiently
|
| 180 |
+
pad_to_sequence_len:
|
| 181 |
+
# Use efficient multi-packing with block diagonal attention and per sequence position_ids. Recommend set to 'true'
|
| 182 |
+
sample_packing:
|
| 183 |
+
# Set to 'false' if getting errors during eval with sample_packing on.
|
| 184 |
+
eval_sample_packing:
|
| 185 |
+
# You can set these packing optimizations AFTER starting a training at least once.
|
| 186 |
+
# The trainer will provide recommended values for these values.
|
| 187 |
+
sample_packing_eff_est:
|
| 188 |
+
total_num_tokens:
|
| 189 |
+
|
| 190 |
+
# Passed through to transformers when loading the model when launched without accelerate
|
| 191 |
+
# Use `sequential` when training w/ model parallelism to limit memory
|
| 192 |
+
device_map:
|
| 193 |
+
# Defines the max memory usage per gpu on the system. Passed through to transformers when loading the model.
|
| 194 |
+
max_memory:
|
| 195 |
+
|
| 196 |
+
# If you want to use 'lora' or 'qlora' or leave blank to train all parameters in original model
|
| 197 |
+
adapter: lora
|
| 198 |
+
# If you already have a lora model trained that you want to load, put that here.
|
| 199 |
+
# This means after training, if you want to test the model, you should set this to the value of `output_dir`.
|
| 200 |
+
# Note that if you merge an adapter to the base model, a new subdirectory `merged` will be created under the `output_dir`.
|
| 201 |
+
lora_model_dir:
|
| 202 |
+
|
| 203 |
+
# LoRA hyperparameters
|
| 204 |
+
# For more details about the following options, see:
|
| 205 |
+
# https://www.anyscale.com/blog/fine-tuning-llms-lora-or-full-parameter-an-in-depth-analysis-with-llama-2
|
| 206 |
+
lora_r: 8
|
| 207 |
+
lora_alpha: 16
|
| 208 |
+
lora_dropout: 0.05
|
| 209 |
+
lora_target_modules:
|
| 210 |
+
- q_proj
|
| 211 |
+
- v_proj
|
| 212 |
+
# - k_proj
|
| 213 |
+
# - o_proj
|
| 214 |
+
# - gate_proj
|
| 215 |
+
# - down_proj
|
| 216 |
+
# - up_proj
|
| 217 |
+
lora_target_linear: # If true, will target all linear modules
|
| 218 |
+
peft_layers_to_transform: # The layer indices to transform, otherwise, apply to all layers
|
| 219 |
+
|
| 220 |
+
# If you added new tokens to the tokenizer, you may need to save some LoRA modules because they need to know the new tokens.
|
| 221 |
+
# For LLaMA and Mistral, you need to save `embed_tokens` and `lm_head`. It may vary for other models.
|
| 222 |
+
# `embed_tokens` converts tokens to embeddings, and `lm_head` converts embeddings to token probabilities.
|
| 223 |
+
# https://github.com/huggingface/peft/issues/334#issuecomment-1561727994
|
| 224 |
+
lora_modules_to_save:
|
| 225 |
+
# - embed_tokens
|
| 226 |
+
# - lm_head
|
| 227 |
+
|
| 228 |
+
lora_fan_in_fan_out: false
|
| 229 |
+
|
| 230 |
+
peft:
|
| 231 |
+
# Configuration options for loftq initialization for LoRA
|
| 232 |
+
# https://huggingface.co/docs/peft/developer_guides/quantization#loftq-initialization
|
| 233 |
+
loftq_config:
|
| 234 |
+
loftq_bits: # typically 4 bits
|
| 235 |
+
|
| 236 |
+
# ReLoRA configuration
|
| 237 |
+
# Must use either 'lora' or 'qlora' adapter, and does not support fsdp or deepspeed
|
| 238 |
+
relora_steps: # Number of steps per ReLoRA restart
|
| 239 |
+
relora_warmup_steps: # Number of per-restart warmup steps
|
| 240 |
+
relora_anneal_steps: # Number of anneal steps for each relora cycle
|
| 241 |
+
relora_prune_ratio: # threshold for optimizer magnitude when pruning
|
| 242 |
+
relora_cpu_offload: # True to perform lora weight merges on cpu during restarts, for modest gpu memory savings
|
| 243 |
+
|
| 244 |
+
# wandb configuration if you're using it
|
| 245 |
+
# Make sure your `WANDB_API_KEY` environment variable is set (recommended) or you login to wandb with `wandb login`.
|
| 246 |
+
wandb_mode: # "offline" to save run metadata locally and not sync to the server, "disabled" to turn off wandb
|
| 247 |
+
wandb_project: # Your wandb project name
|
| 248 |
+
wandb_entity: # A wandb Team name if using a Team
|
| 249 |
+
wandb_watch:
|
| 250 |
+
wandb_name: # Set the name of your wandb run
|
| 251 |
+
wandb_run_id: # Set the ID of your wandb run
|
| 252 |
+
wandb_log_model: # "checkpoint" to log model to wandb Artifacts every `save_steps` or "end" to log only at the end of training
|
| 253 |
+
|
| 254 |
+
# mlflow configuration if you're using it
|
| 255 |
+
mlflow_tracking_uri: # URI to mlflow
|
| 256 |
+
mlflow_experiment_name: # Your experiment name
|
| 257 |
+
hf_mlflow_log_artifacts: # set to true to copy each saved checkpoint on each save to mlflow artifact registry
|
| 258 |
+
|
| 259 |
+
# Where to save the full-finetuned model to
|
| 260 |
+
output_dir: ./completed-model
|
| 261 |
+
|
| 262 |
+
# Whether to use torch.compile and which backend to use
|
| 263 |
+
torch_compile: # bool
|
| 264 |
+
torch_compile_backend: # Optional[str]
|
| 265 |
+
|
| 266 |
+
# Training hyperparameters
|
| 267 |
+
|
| 268 |
+
# If greater than 1, backpropagation will be skipped and the gradients will be accumulated for the given number of steps.
|
| 269 |
+
gradient_accumulation_steps: 1
|
| 270 |
+
# The number of samples to include in each batch. This is the number of samples sent to each GPU.
|
| 271 |
+
micro_batch_size: 2
|
| 272 |
+
eval_batch_size:
|
| 273 |
+
num_epochs: 4
|
| 274 |
+
warmup_steps: 100 # cannot use with warmup_ratio
|
| 275 |
+
warmup_ratio: 0.05 # cannot use with warmup_steps
|
| 276 |
+
learning_rate: 0.00003
|
| 277 |
+
lr_quadratic_warmup:
|
| 278 |
+
logging_steps:
|
| 279 |
+
eval_steps: # Leave empty to eval at each epoch, integers for every N steps. decimal for fraction of total steps
|
| 280 |
+
evals_per_epoch: # number of times per epoch to run evals, mutually exclusive with eval_steps
|
| 281 |
+
save_strategy: # Set to `no` to skip checkpoint saves
|
| 282 |
+
save_steps: # Leave empty to save at each epoch
|
| 283 |
+
saves_per_epoch: # number of times per epoch to save a checkpoint, mutually exclusive with save_steps
|
| 284 |
+
save_total_limit: # Checkpoints saved at a time
|
| 285 |
+
# Maximum number of iterations to train for. It precedes num_epochs which means that
|
| 286 |
+
# if both are set, num_epochs will not be guaranteed.
|
| 287 |
+
# e.g., when 1 epoch is 1000 steps => `num_epochs: 2` and `max_steps: 100` will train for 100 steps
|
| 288 |
+
max_steps:
|
| 289 |
+
|
| 290 |
+
eval_table_size: # Approximate number of predictions sent to wandb depending on batch size. Enabled above 0. Default is 0
|
| 291 |
+
eval_max_new_tokens: # Total number of tokens generated for predictions sent to wandb. Default is 128
|
| 292 |
+
eval_causal_lm_metrics: # HF evaluate metrics used during evaluation. Default is ["sacrebleu", "comet", "ter", chrf]
|
| 293 |
+
|
| 294 |
+
loss_watchdog_threshold: # High loss value, indicating the learning has broken down (a good estimate is ~2 times the loss at the start of training)
|
| 295 |
+
loss_watchdog_patience: # Number of high-loss steps in a row before the trainer aborts (default: 3)
|
| 296 |
+
|
| 297 |
+
# Save model as safetensors (require safetensors package)
|
| 298 |
+
save_safetensors:
|
| 299 |
+
|
| 300 |
+
# Whether to mask out or include the human's prompt from the training labels
|
| 301 |
+
train_on_inputs: false
|
| 302 |
+
# Group similarly sized data to minimize padding.
|
| 303 |
+
# May be slower to start, as it must download and sort the entire dataset.
|
| 304 |
+
# Note that training loss may have an oscillating pattern with this enabled.
|
| 305 |
+
group_by_length: false
|
| 306 |
+
|
| 307 |
+
# Whether to use gradient checkpointing https://huggingface.co/docs/transformers/v4.18.0/en/performance#gradient-checkpointing
|
| 308 |
+
gradient_checkpointing: false
|
| 309 |
+
# additional kwargs to pass to the trainer for gradient checkpointing
|
| 310 |
+
# gradient_checkpointing_kwargs:
|
| 311 |
+
# use_reentrant: true
|
| 312 |
+
|
| 313 |
+
# Stop training after this many evaluation losses have increased in a row
|
| 314 |
+
# https://huggingface.co/transformers/v4.2.2/_modules/transformers/trainer_callback.html#EarlyStoppingCallback
|
| 315 |
+
early_stopping_patience: 3
|
| 316 |
+
|
| 317 |
+
# Specify a scheduler and kwargs to use with the optimizer
|
| 318 |
+
lr_scheduler: # 'one_cycle' | 'log_sweep' | empty for cosine
|
| 319 |
+
lr_scheduler_kwargs:
|
| 320 |
+
cosine_min_lr_ratio: # decay lr to some percentage of the peak lr, e.g. cosine_min_lr_ratio=0.1 for 10% of peak lr
|
| 321 |
+
cosine_constant_lr_ratio: # freeze lr at some percentage of the step, e.g. cosine_constant_lr_ratio=0.8 means start cosine_min_lr at 80% of training step (https://arxiv.org/pdf/2308.04014.pdf)
|
| 322 |
+
|
| 323 |
+
# For one_cycle optim
|
| 324 |
+
lr_div_factor: # Learning rate div factor
|
| 325 |
+
|
| 326 |
+
# Specify optimizer
|
| 327 |
+
# Valid values are driven by the Transformers OptimizerNames class, see:
|
| 328 |
+
# https://github.com/huggingface/transformers/blob/95b374952dc27d8511541d6f5a4e22c9ec11fb24/src/transformers/training_args.py#L134
|
| 329 |
+
#
|
| 330 |
+
# Note that not all optimizers may be available in your environment, ex: 'adamw_anyprecision' is part of
|
| 331 |
+
# torchdistx, 'adamw_bnb_8bit' is part of bnb.optim.Adam8bit, etc. When in doubt, it is recommended to start with the optimizer used
|
| 332 |
+
# in the examples/ for your model and fine-tuning use case.
|
| 333 |
+
#
|
| 334 |
+
# Valid values for 'optimizer' include:
|
| 335 |
+
# - adamw_hf
|
| 336 |
+
# - adamw_torch
|
| 337 |
+
# - adamw_torch_fused
|
| 338 |
+
# - adamw_torch_xla
|
| 339 |
+
# - adamw_apex_fused
|
| 340 |
+
# - adafactor
|
| 341 |
+
# - adamw_anyprecision
|
| 342 |
+
# - sgd
|
| 343 |
+
# - adagrad
|
| 344 |
+
# - adamw_bnb_8bit
|
| 345 |
+
# - lion_8bit
|
| 346 |
+
# - lion_32bit
|
| 347 |
+
# - paged_adamw_32bit
|
| 348 |
+
# - paged_adamw_8bit
|
| 349 |
+
# - paged_lion_32bit
|
| 350 |
+
# - paged_lion_8bit
|
| 351 |
+
# - galore_adamw
|
| 352 |
+
# - galore_adamw_8bit
|
| 353 |
+
# - galore_adafactor
|
| 354 |
+
# - galore_adamw_layerwise
|
| 355 |
+
# - galore_adamw_8bit_layerwise
|
| 356 |
+
# - galore_adafactor_layerwise
|
| 357 |
+
optimizer:
|
| 358 |
+
# Dictionary of arguments to pass to the optimizer
|
| 359 |
+
optim_args:
|
| 360 |
+
# For Galore Optimizers the following optim_args are available
|
| 361 |
+
# rank: # type: int
|
| 362 |
+
# update_proj_gap # type: int
|
| 363 |
+
# scale # type: float
|
| 364 |
+
# proj_type: # type: str, default = std
|
| 365 |
+
|
| 366 |
+
# The target modules to optimize, i.e. the module names that you would like to train, right now this is used only for GaLore algorithm
|
| 367 |
+
optim_target_modules:
|
| 368 |
+
# - self_attn # for llama
|
| 369 |
+
# - mlp
|
| 370 |
+
|
| 371 |
+
# Specify weight decay
|
| 372 |
+
weight_decay:
|
| 373 |
+
# adamw hyperparams
|
| 374 |
+
adam_beta1:
|
| 375 |
+
adam_beta2:
|
| 376 |
+
adam_epsilon:
|
| 377 |
+
# Gradient clipping max norm
|
| 378 |
+
max_grad_norm:
|
| 379 |
+
|
| 380 |
+
# Augmentation techniques
|
| 381 |
+
# NEFT https://arxiv.org/abs/2310.05914, set this to a number (paper default is 5) to add noise to embeddings
|
| 382 |
+
# currently only supported on Llama and Mistral
|
| 383 |
+
neftune_noise_alpha:
|
| 384 |
+
|
| 385 |
+
# Whether to bettertransformers
|
| 386 |
+
flash_optimum:
|
| 387 |
+
# Whether to use xformers attention patch https://github.com/facebookresearch/xformers:
|
| 388 |
+
xformers_attention:
|
| 389 |
+
# Whether to use flash attention patch https://github.com/Dao-AILab/flash-attention:
|
| 390 |
+
flash_attention:
|
| 391 |
+
flash_attn_cross_entropy: # Whether to use flash-attention cross entropy implementation - advanced use only
|
| 392 |
+
flash_attn_rms_norm: # Whether to use flash-attention rms norm implementation - advanced use only
|
| 393 |
+
flash_attn_fuse_qkv: # Whether to fuse QKV into a single operation
|
| 394 |
+
flash_attn_fuse_mlp: # Whether to fuse part of the MLP into a single operation
|
| 395 |
+
# Whether to use scaled-dot-product attention
|
| 396 |
+
# https://pytorch.org/docs/stable/generated/torch.nn.functional.scaled_dot_product_attention.html
|
| 397 |
+
sdp_attention:
|
| 398 |
+
# Shifted-sparse attention (only llama) - https://arxiv.org/pdf/2309.12307.pdf
|
| 399 |
+
s2_attention:
|
| 400 |
+
# Resume from a specific checkpoint dir
|
| 401 |
+
resume_from_checkpoint:
|
| 402 |
+
# If resume_from_checkpoint isn't set and you simply want it to start where it left off.
|
| 403 |
+
# Be careful with this being turned on between different models.
|
| 404 |
+
auto_resume_from_checkpoints: false
|
| 405 |
+
|
| 406 |
+
# Don't mess with this, it's here for accelerate and torchrun
|
| 407 |
+
local_rank:
|
| 408 |
+
|
| 409 |
+
# Add or change special tokens.
|
| 410 |
+
# If you add tokens here, you don't need to add them to the `tokens` list.
|
| 411 |
+
special_tokens:
|
| 412 |
+
# bos_token: "<s>"
|
| 413 |
+
# eos_token: "</s>"
|
| 414 |
+
# unk_token: "<unk>"
|
| 415 |
+
|
| 416 |
+
# Add extra tokens.
|
| 417 |
+
tokens:
|
| 418 |
+
|
| 419 |
+
# FSDP
|
| 420 |
+
fsdp:
|
| 421 |
+
fsdp_config:
|
| 422 |
+
|
| 423 |
+
# Deepspeed config path. e.g., deepspeed_configs/zero3.json
|
| 424 |
+
deepspeed:
|
| 425 |
+
|
| 426 |
+
# Advanced DDP Arguments
|
| 427 |
+
ddp_timeout:
|
| 428 |
+
ddp_bucket_cap_mb:
|
| 429 |
+
ddp_broadcast_buffers:
|
| 430 |
+
|
| 431 |
+
# Path to torch distx for optim 'adamw_anyprecision'
|
| 432 |
+
torchdistx_path:
|
| 433 |
+
|
| 434 |
+
# Set to HF dataset for type: 'completion' for streaming instead of pre-tokenize
|
| 435 |
+
pretraining_dataset:
|
| 436 |
+
|
| 437 |
+
# Debug mode
|
| 438 |
+
debug:
|
| 439 |
+
|
| 440 |
+
# Seed
|
| 441 |
+
seed:
|
| 442 |
+
|
| 443 |
+
# Allow overwrite yml config using from cli
|
| 444 |
+
strict:
|
| 445 |
```
|
docs/dataset-formats/conversation.qmd
ADDED
|
@@ -0,0 +1,71 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
title: Conversation
|
| 3 |
+
description: Conversation format for supervised fine-tuning.
|
| 4 |
+
order: 1
|
| 5 |
+
---
|
| 6 |
+
|
| 7 |
+
## Formats
|
| 8 |
+
|
| 9 |
+
### sharegpt
|
| 10 |
+
|
| 11 |
+
conversations where `from` is `human`/`gpt`. (optional: first row with role `system` to override default system prompt)
|
| 12 |
+
|
| 13 |
+
```{.json filename="data.jsonl"}
|
| 14 |
+
{"conversations": [{"from": "...", "value": "..."}]}
|
| 15 |
+
```
|
| 16 |
+
|
| 17 |
+
Note: `type: sharegpt` opens a special config `conversation:` that enables conversions to many Conversation types. See [the docs](../docs/config.qmd) for all config options.
|
| 18 |
+
|
| 19 |
+
### pygmalion
|
| 20 |
+
|
| 21 |
+
```{.json filename="data.jsonl"}
|
| 22 |
+
{"conversations": [{"role": "...", "value": "..."}]}
|
| 23 |
+
```
|
| 24 |
+
|
| 25 |
+
### sharegpt.load_role
|
| 26 |
+
|
| 27 |
+
conversations where `role` is used instead of `from`
|
| 28 |
+
|
| 29 |
+
```{.json filename="data.jsonl"}
|
| 30 |
+
{"conversations": [{"role": "...", "value": "..."}]}
|
| 31 |
+
```
|
| 32 |
+
|
| 33 |
+
### sharegpt.load_guanaco
|
| 34 |
+
|
| 35 |
+
conversations where `from` is `prompter` `assistant` instead of default sharegpt
|
| 36 |
+
|
| 37 |
+
```{.json filename="data.jsonl"}
|
| 38 |
+
{"conversations": [{"from": "...", "value": "..."}]}
|
| 39 |
+
```
|
| 40 |
+
|
| 41 |
+
### sharegpt_jokes
|
| 42 |
+
|
| 43 |
+
creates a chat where bot is asked to tell a joke, then explain why the joke is funny
|
| 44 |
+
|
| 45 |
+
```{.json filename="data.jsonl"}
|
| 46 |
+
{"conversations": [{"title": "...", "text": "...", "explanation": "..."}]}
|
| 47 |
+
```
|
| 48 |
+
|
| 49 |
+
## How to add custom prompts for instruction-tuning
|
| 50 |
+
|
| 51 |
+
For a dataset that is preprocessed for instruction purposes:
|
| 52 |
+
|
| 53 |
+
```{.json filename="data.jsonl"}
|
| 54 |
+
{"input": "...", "output": "..."}
|
| 55 |
+
```
|
| 56 |
+
|
| 57 |
+
You can use this example in your YAML config:
|
| 58 |
+
|
| 59 |
+
```{.yaml filename="config.yaml"}
|
| 60 |
+
datasets:
|
| 61 |
+
- path: repo
|
| 62 |
+
type:
|
| 63 |
+
system_prompt: ""
|
| 64 |
+
field_system: system
|
| 65 |
+
field_instruction: input
|
| 66 |
+
field_output: output
|
| 67 |
+
format: "[INST] {instruction} [/INST]"
|
| 68 |
+
no_input_format: "[INST] {instruction} [/INST]"
|
| 69 |
+
```
|
| 70 |
+
|
| 71 |
+
See full config options under [here](../docs/config.qmd).
|
docs/dataset-formats/index.qmd
ADDED
|
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
title: Dataset Formats
|
| 3 |
+
description: Supported dataset formats.
|
| 4 |
+
listing:
|
| 5 |
+
fields: [title, description]
|
| 6 |
+
type: table
|
| 7 |
+
sort-ui: false
|
| 8 |
+
filter-ui: false
|
| 9 |
+
max-description-length: 250
|
| 10 |
+
---
|
| 11 |
+
|
| 12 |
+
Axolotl supports a variety of dataset formats. It is recommended to use a JSONL format. The schema of the JSONL depends upon the task and the prompt template you wish to use. Instead of a JSONL, you can also use a HuggingFace dataset with columns for each JSONL field.
|
| 13 |
+
|
| 14 |
+
Below are these various formats organized by task:
|
docs/dataset-formats/inst_tune.qmd
ADDED
|
@@ -0,0 +1,165 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
title: Instruction Tuning
|
| 3 |
+
description: Instruction tuning formats for supervised fine-tuning.
|
| 4 |
+
order: 2
|
| 5 |
+
---
|
| 6 |
+
|
| 7 |
+
## alpaca
|
| 8 |
+
|
| 9 |
+
instruction; input(optional)
|
| 10 |
+
|
| 11 |
+
```{.json filename="data.jsonl"}
|
| 12 |
+
{"instruction": "...", "input": "...", "output": "..."}
|
| 13 |
+
```
|
| 14 |
+
|
| 15 |
+
## jeopardy
|
| 16 |
+
|
| 17 |
+
question and answer
|
| 18 |
+
|
| 19 |
+
```{.json filename="data.jsonl"}
|
| 20 |
+
{"question": "...", "category": "...", "answer": "..."}
|
| 21 |
+
```
|
| 22 |
+
|
| 23 |
+
## oasst
|
| 24 |
+
|
| 25 |
+
instruction
|
| 26 |
+
|
| 27 |
+
```{.json filename="data.jsonl"}
|
| 28 |
+
{"INSTRUCTION": "...", "RESPONSE": "..."}
|
| 29 |
+
```
|
| 30 |
+
|
| 31 |
+
## gpteacher
|
| 32 |
+
|
| 33 |
+
instruction; input(optional)
|
| 34 |
+
|
| 35 |
+
```{.json filename="data.jsonl"}
|
| 36 |
+
{"instruction": "...", "input": "...", "response": "..."}
|
| 37 |
+
```
|
| 38 |
+
|
| 39 |
+
## reflection
|
| 40 |
+
|
| 41 |
+
instruction with reflect; input(optional)
|
| 42 |
+
|
| 43 |
+
```{.json filename="data.jsonl"}
|
| 44 |
+
{"instruction": "...", "input": "...", "output": "...", "reflection": "...", "corrected": "..."}
|
| 45 |
+
```
|
| 46 |
+
|
| 47 |
+
## explainchoice
|
| 48 |
+
|
| 49 |
+
question, choices, (solution OR explanation)
|
| 50 |
+
|
| 51 |
+
```{.json filename="data.jsonl"}
|
| 52 |
+
{"question": "...", "choices": ["..."], "solution": "...", "explanation": "..."}
|
| 53 |
+
```
|
| 54 |
+
|
| 55 |
+
## concisechoice
|
| 56 |
+
|
| 57 |
+
question, choices, (solution OR explanation)
|
| 58 |
+
|
| 59 |
+
```{.json filename="data.jsonl"}
|
| 60 |
+
{"question": "...", "choices": ["..."], "solution": "...", "explanation": "..."}
|
| 61 |
+
```
|
| 62 |
+
|
| 63 |
+
## summarizetldr
|
| 64 |
+
|
| 65 |
+
article and summary
|
| 66 |
+
|
| 67 |
+
```{.json filename="data.jsonl"}
|
| 68 |
+
{"article": "...", "summary": "..."}
|
| 69 |
+
```
|
| 70 |
+
|
| 71 |
+
## alpaca_chat
|
| 72 |
+
|
| 73 |
+
basic instruct for alpaca chat
|
| 74 |
+
|
| 75 |
+
```{.json filename="data.jsonl"}
|
| 76 |
+
{"instruction": "...", "input": "...", "response": "..."}
|
| 77 |
+
```
|
| 78 |
+
|
| 79 |
+
## alpaca_chat.load_qa
|
| 80 |
+
|
| 81 |
+
question and answer for alpaca chat
|
| 82 |
+
|
| 83 |
+
```{.json filename="data.jsonl"}
|
| 84 |
+
{"question": "...", "answer": "..."}
|
| 85 |
+
```
|
| 86 |
+
|
| 87 |
+
## alpaca_chat.load_concise
|
| 88 |
+
|
| 89 |
+
question and answer for alpaca chat, for concise answers
|
| 90 |
+
|
| 91 |
+
```{.json filename="data.jsonl"}
|
| 92 |
+
{"instruction": "...", "input": "...", "response": "..."}
|
| 93 |
+
```
|
| 94 |
+
|
| 95 |
+
## alpaca_chat.load_camel_ai
|
| 96 |
+
|
| 97 |
+
question and answer for alpaca chat, for load_camel_ai
|
| 98 |
+
|
| 99 |
+
```{.json filename="data.jsonl"}
|
| 100 |
+
{"message_1": "...", "message_2": "..."}
|
| 101 |
+
```
|
| 102 |
+
|
| 103 |
+
## alpaca_w_system.load_open_orca
|
| 104 |
+
|
| 105 |
+
support for open orca datasets with included system prompts, instruct
|
| 106 |
+
|
| 107 |
+
```{.json filename="data.jsonl"}
|
| 108 |
+
{"system_prompt": "...", "question": "...", "response": "..."}
|
| 109 |
+
```
|
| 110 |
+
|
| 111 |
+
## context_qa
|
| 112 |
+
|
| 113 |
+
in context question answering from an article
|
| 114 |
+
|
| 115 |
+
```{.json filename="data.jsonl"}
|
| 116 |
+
{"article": "...", "question": "...", "answer": "..."}
|
| 117 |
+
```
|
| 118 |
+
|
| 119 |
+
## context_qa.load_v2
|
| 120 |
+
|
| 121 |
+
in context question answering (alternate)
|
| 122 |
+
|
| 123 |
+
```{.json filename="data.jsonl"}
|
| 124 |
+
{"context": "...", "question": "...", "answer": "..."}
|
| 125 |
+
```
|
| 126 |
+
|
| 127 |
+
## context_qa.load_404
|
| 128 |
+
|
| 129 |
+
in context question answering from an article, with default response for no answer from context
|
| 130 |
+
|
| 131 |
+
```{.json filename="data.jsonl"}
|
| 132 |
+
{"article": "...", "unanswerable_question": "..."}
|
| 133 |
+
```
|
| 134 |
+
|
| 135 |
+
## creative_acr.load_answer
|
| 136 |
+
|
| 137 |
+
instruction and revision
|
| 138 |
+
|
| 139 |
+
```{.json filename="data.jsonl"}
|
| 140 |
+
{"instruction": "...", "revision": "..."}
|
| 141 |
+
```
|
| 142 |
+
|
| 143 |
+
## creative_acr.load_critique
|
| 144 |
+
|
| 145 |
+
critique
|
| 146 |
+
|
| 147 |
+
```{.json filename="data.jsonl"}
|
| 148 |
+
{"scores": "...", "critiques": "...", "instruction": "...", "answer": "..."}
|
| 149 |
+
```
|
| 150 |
+
|
| 151 |
+
## creative_acr.load_revise
|
| 152 |
+
|
| 153 |
+
critique and revise
|
| 154 |
+
|
| 155 |
+
```{.json filename="data.jsonl"}
|
| 156 |
+
{"scores": "...", "critiques": "...", "instruction": "...", "answer": "...", "revision": "..."}
|
| 157 |
+
```
|
| 158 |
+
|
| 159 |
+
## metharme
|
| 160 |
+
|
| 161 |
+
instruction, adds additional eos tokens
|
| 162 |
+
|
| 163 |
+
```{.json filename="data.jsonl"}
|
| 164 |
+
{"prompt": "...", "generation": "..."}
|
| 165 |
+
```
|
docs/dataset-formats/pretraining.qmd
ADDED
|
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
title: Pre-training
|
| 3 |
+
description: Data format for a pre-training completion task.
|
| 4 |
+
order: 3
|
| 5 |
+
---
|
| 6 |
+
|
| 7 |
+
For pretraining, there is no prompt template or roles. The only required field is `text`:
|
| 8 |
+
|
| 9 |
+
```{.json filename="data.jsonl"}
|
| 10 |
+
{"text": "first row"}
|
| 11 |
+
{"text": "second row"}
|
| 12 |
+
...
|
| 13 |
+
```
|
| 14 |
+
|
| 15 |
+
:::{.callout-note}
|
| 16 |
+
|
| 17 |
+
### Streaming is recommended for large datasets
|
| 18 |
+
|
| 19 |
+
Axolotl usually loads the entire dataset into memory. This will be challenging for large datasets. Use the following config to enable streaming:
|
| 20 |
+
|
| 21 |
+
```{.yaml filename="config.yaml"}
|
| 22 |
+
pretraining_dataset: # hf path only
|
| 23 |
+
...
|
| 24 |
+
```
|
| 25 |
+
|
| 26 |
+
:::
|
docs/dataset-formats/template_free.qmd
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
title: Template-Free
|
| 3 |
+
description: Construct prompts without a template.
|
| 4 |
+
order: 4
|
| 5 |
+
---
|
| 6 |
+
|
| 7 |
+
See [these docs](../input_output.qmd).
|
docs/dataset-formats/tokenized.qmd
ADDED
|
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
title: Custom Pre-Tokenized Dataset
|
| 3 |
+
description: How to use a custom pre-tokenized dataset.
|
| 4 |
+
order: 5
|
| 5 |
+
---
|
| 6 |
+
|
| 7 |
+
- Do not pass a `type:` in your axolotl config.
|
| 8 |
+
- Columns in Dataset must be exactly `input_ids`, `attention_mask`, `labels`
|
| 9 |
+
|
| 10 |
+
```{.yaml filename="config.yml"}
|
| 11 |
+
- path: ...
|
| 12 |
+
```
|
docs/fsdp_qlora.qmd
CHANGED
|
@@ -1,5 +1,5 @@
|
|
| 1 |
---
|
| 2 |
-
title: FDSP + QLoRA
|
| 3 |
description: Use FSDP with QLoRA to fine-tune large LLMs on consumer GPUs.
|
| 4 |
format:
|
| 5 |
html:
|
|
|
|
| 1 |
---
|
| 2 |
+
title: "FDSP + QLoRA"
|
| 3 |
description: Use FSDP with QLoRA to fine-tune large LLMs on consumer GPUs.
|
| 4 |
format:
|
| 5 |
html:
|
docs/input_output.qmd
CHANGED
|
@@ -91,8 +91,9 @@ format into a jsonl file (below is the first row from the file
|
|
| 91 |
|
| 92 |
```bash
|
| 93 |
$ head -n1 output.jsonl | python -m json.tool
|
|
|
|
| 94 |
|
| 95 |
-
{.cell-output .cell-output-stdout}
|
| 96 |
{
|
| 97 |
"segments": [
|
| 98 |
{
|
|
@@ -113,7 +114,7 @@ $ head -n1 output.jsonl | python -m json.tool
|
|
| 113 |
}
|
| 114 |
]
|
| 115 |
}
|
| 116 |
-
|
| 117 |
|
| 118 |
Set `label:false` when you want to mask a segment of text so that the
|
| 119 |
model isn't trained on it. Some things to keep in mind:
|
|
@@ -238,8 +239,9 @@ version is repeated below for reference):
|
|
| 238 |
|
| 239 |
```bash
|
| 240 |
$ head -n1 output.jsonl | python -m json.tool
|
|
|
|
| 241 |
|
| 242 |
-
{.cell-output .cell-output-stdout}
|
| 243 |
{
|
| 244 |
"segments": [
|
| 245 |
{
|
|
@@ -260,4 +262,4 @@ $ head -n1 output.jsonl | python -m json.tool
|
|
| 260 |
}
|
| 261 |
]
|
| 262 |
}
|
| 263 |
-
|
|
|
|
| 91 |
|
| 92 |
```bash
|
| 93 |
$ head -n1 output.jsonl | python -m json.tool
|
| 94 |
+
```
|
| 95 |
|
| 96 |
+
:::{.cell-output .cell-output-stdout}
|
| 97 |
{
|
| 98 |
"segments": [
|
| 99 |
{
|
|
|
|
| 114 |
}
|
| 115 |
]
|
| 116 |
}
|
| 117 |
+
:::
|
| 118 |
|
| 119 |
Set `label:false` when you want to mask a segment of text so that the
|
| 120 |
model isn't trained on it. Some things to keep in mind:
|
|
|
|
| 239 |
|
| 240 |
```bash
|
| 241 |
$ head -n1 output.jsonl | python -m json.tool
|
| 242 |
+
```
|
| 243 |
|
| 244 |
+
:::{.cell-output .cell-output-stdout}
|
| 245 |
{
|
| 246 |
"segments": [
|
| 247 |
{
|
|
|
|
| 262 |
}
|
| 263 |
]
|
| 264 |
}
|
| 265 |
+
:::
|