fix adam bnb optimizer grouped parameters, fix peft model 8bit conversion logic, black formatting
Browse files- src/axolotl/utils/models.py +2 -2
- src/axolotl/utils/trainer.py +53 -15
src/axolotl/utils/models.py
CHANGED
|
@@ -158,8 +158,8 @@ def load_model(
|
|
| 158 |
for k, v in cfg.tokens.items():
|
| 159 |
tokenizer.add_special_tokens({k: v})
|
| 160 |
|
| 161 |
-
if load_in_8bit and cfg.load_4bit:
|
| 162 |
-
logging.info("converting model w/ prepare_model_for_int8_training")
|
| 163 |
model = prepare_model_for_int8_training(model)
|
| 164 |
|
| 165 |
model, lora_config = load_adapter(model, cfg, adapter)
|
|
|
|
| 158 |
for k, v in cfg.tokens.items():
|
| 159 |
tokenizer.add_special_tokens({k: v})
|
| 160 |
|
| 161 |
+
if cfg.adapter and load_in_8bit and not cfg.load_4bit:
|
| 162 |
+
logging.info("converting PEFT model w/ prepare_model_for_int8_training")
|
| 163 |
model = prepare_model_for_int8_training(model)
|
| 164 |
|
| 165 |
model, lora_config = load_adapter(model, cfg, adapter)
|
src/axolotl/utils/trainer.py
CHANGED
|
@@ -17,9 +17,21 @@ def setup_trainer(cfg, train_dataset, eval_dataset, model, tokenizer):
|
|
| 17 |
total_num_steps = int(
|
| 18 |
math.ceil(len(train_dataset) * cfg.num_epochs / cfg.batch_size)
|
| 19 |
)
|
| 20 |
-
warmup_steps =
|
| 21 |
-
|
| 22 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 23 |
|
| 24 |
training_arguments_kwargs = {}
|
| 25 |
if cfg.bf16 == "full":
|
|
@@ -31,19 +43,32 @@ def setup_trainer(cfg, train_dataset, eval_dataset, model, tokenizer):
|
|
| 31 |
training_arguments_kwargs["logging_steps"] = logging_steps
|
| 32 |
if cfg.gradient_checkpointing is not None:
|
| 33 |
if cfg.load_4bit:
|
| 34 |
-
from alpaca_lora_4bit.gradient_checkpointing import
|
| 35 |
-
|
| 36 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 37 |
else:
|
| 38 |
-
training_arguments_kwargs[
|
|
|
|
|
|
|
| 39 |
if cfg.fsdp:
|
| 40 |
training_arguments_kwargs["fsdp"] = cfg.fsdp
|
| 41 |
if cfg.fsdp_config:
|
| 42 |
training_arguments_kwargs["fsdp_config"] = dict(cfg.fsdp_config)
|
| 43 |
|
| 44 |
-
|
| 45 |
# deepspeed
|
| 46 |
-
if
|
|
|
|
|
|
|
|
|
|
| 47 |
if cfg.deepspeed:
|
| 48 |
training_arguments_kwargs["deepspeed"] = cfg.deepspeed
|
| 49 |
else:
|
|
@@ -62,12 +87,14 @@ def setup_trainer(cfg, train_dataset, eval_dataset, model, tokenizer):
|
|
| 62 |
save_steps=save_steps,
|
| 63 |
output_dir=cfg.output_dir,
|
| 64 |
save_total_limit=3,
|
| 65 |
-
load_best_model_at_end=True
|
|
|
|
|
|
|
| 66 |
ddp_find_unused_parameters=False if cfg.ddp else None,
|
| 67 |
group_by_length=cfg.group_by_length,
|
| 68 |
report_to="wandb" if cfg.use_wandb else None,
|
| 69 |
run_name=cfg.wandb_run_id if cfg.use_wandb else None,
|
| 70 |
-
optim=cfg.optimizer if cfg.optimizer
|
| 71 |
lr_scheduler_type=cfg.lr_scheduler if cfg.lr_scheduler else None,
|
| 72 |
weight_decay=cfg.weight_decay if cfg.weight_decay else 0.0,
|
| 73 |
**training_arguments_kwargs,
|
|
@@ -78,22 +105,33 @@ def setup_trainer(cfg, train_dataset, eval_dataset, model, tokenizer):
|
|
| 78 |
if cfg.optimizer == "adamw_anyprecision":
|
| 79 |
if Path(cfg.torchdistx_path).exists():
|
| 80 |
sys.path.append(cfg.torchdistx_path)
|
| 81 |
-
|
| 82 |
-
if
|
|
|
|
|
|
|
|
|
|
|
|
|
| 83 |
decay_parameters = get_parameter_names(model, [nn.LayerNorm])
|
| 84 |
decay_parameters = [name for name in decay_parameters if "bias" not in name]
|
| 85 |
optimizer_grouped_parameters = [
|
| 86 |
{
|
| 87 |
-
"params": [
|
|
|
|
|
|
|
|
|
|
|
|
|
| 88 |
"weight_decay": training_args.weight_decay,
|
| 89 |
},
|
| 90 |
{
|
| 91 |
"params": [
|
| 92 |
-
p
|
|
|
|
|
|
|
| 93 |
],
|
| 94 |
"weight_decay": 0.0,
|
| 95 |
},
|
| 96 |
]
|
|
|
|
| 97 |
optimizer = bnb.optim.Adam8bit(
|
| 98 |
optimizer_grouped_parameters,
|
| 99 |
betas=(training_args.adam_beta1, training_args.adam_beta2),
|
|
|
|
| 17 |
total_num_steps = int(
|
| 18 |
math.ceil(len(train_dataset) * cfg.num_epochs / cfg.batch_size)
|
| 19 |
)
|
| 20 |
+
warmup_steps = (
|
| 21 |
+
cfg.warmup_steps
|
| 22 |
+
if cfg.warmup_steps is not None
|
| 23 |
+
else min(int(0.03 * total_num_steps), 100)
|
| 24 |
+
)
|
| 25 |
+
logging_steps = (
|
| 26 |
+
cfg.logging_steps
|
| 27 |
+
if cfg.logging_steps is not None
|
| 28 |
+
else max(min(int(0.005 * total_num_steps), 10), 1)
|
| 29 |
+
)
|
| 30 |
+
save_steps = eval_steps = (
|
| 31 |
+
cfg.save_steps
|
| 32 |
+
if cfg.save_steps is not None
|
| 33 |
+
else min(int(0.05 * total_num_steps), 200)
|
| 34 |
+
)
|
| 35 |
|
| 36 |
training_arguments_kwargs = {}
|
| 37 |
if cfg.bf16 == "full":
|
|
|
|
| 43 |
training_arguments_kwargs["logging_steps"] = logging_steps
|
| 44 |
if cfg.gradient_checkpointing is not None:
|
| 45 |
if cfg.load_4bit:
|
| 46 |
+
from alpaca_lora_4bit.gradient_checkpointing import (
|
| 47 |
+
apply_gradient_checkpointing,
|
| 48 |
+
)
|
| 49 |
+
|
| 50 |
+
gradient_checkpointing_ratio = (
|
| 51 |
+
cfg.gradient_checkpointing_ratio
|
| 52 |
+
if cfg.gradient_checkpointing_ratio
|
| 53 |
+
else 1.0
|
| 54 |
+
)
|
| 55 |
+
apply_gradient_checkpointing(
|
| 56 |
+
model, checkpoint_ratio=gradient_checkpointing_ratio
|
| 57 |
+
)
|
| 58 |
else:
|
| 59 |
+
training_arguments_kwargs[
|
| 60 |
+
"gradient_checkpointing"
|
| 61 |
+
] = cfg.gradient_checkpointing
|
| 62 |
if cfg.fsdp:
|
| 63 |
training_arguments_kwargs["fsdp"] = cfg.fsdp
|
| 64 |
if cfg.fsdp_config:
|
| 65 |
training_arguments_kwargs["fsdp_config"] = dict(cfg.fsdp_config)
|
| 66 |
|
|
|
|
| 67 |
# deepspeed
|
| 68 |
+
if (
|
| 69 |
+
os.environ.get("ACCELERATE_USE_DEEPSPEED") == "true"
|
| 70 |
+
and torch.cuda.device_count() > 1
|
| 71 |
+
):
|
| 72 |
if cfg.deepspeed:
|
| 73 |
training_arguments_kwargs["deepspeed"] = cfg.deepspeed
|
| 74 |
else:
|
|
|
|
| 87 |
save_steps=save_steps,
|
| 88 |
output_dir=cfg.output_dir,
|
| 89 |
save_total_limit=3,
|
| 90 |
+
load_best_model_at_end=True
|
| 91 |
+
if cfg.val_set_size > 0 and save_steps % eval_steps == 0
|
| 92 |
+
else False,
|
| 93 |
ddp_find_unused_parameters=False if cfg.ddp else None,
|
| 94 |
group_by_length=cfg.group_by_length,
|
| 95 |
report_to="wandb" if cfg.use_wandb else None,
|
| 96 |
run_name=cfg.wandb_run_id if cfg.use_wandb else None,
|
| 97 |
+
optim=cfg.optimizer if cfg.optimizer else None,
|
| 98 |
lr_scheduler_type=cfg.lr_scheduler if cfg.lr_scheduler else None,
|
| 99 |
weight_decay=cfg.weight_decay if cfg.weight_decay else 0.0,
|
| 100 |
**training_arguments_kwargs,
|
|
|
|
| 105 |
if cfg.optimizer == "adamw_anyprecision":
|
| 106 |
if Path(cfg.torchdistx_path).exists():
|
| 107 |
sys.path.append(cfg.torchdistx_path)
|
| 108 |
+
importlib.import_module("torchdistx")
|
| 109 |
+
if (
|
| 110 |
+
cfg.optimizer == "adamw_bnb_8bit"
|
| 111 |
+
and not cfg.load_4bit
|
| 112 |
+
and not "deepspeed" in training_arguments_kwargs
|
| 113 |
+
):
|
| 114 |
decay_parameters = get_parameter_names(model, [nn.LayerNorm])
|
| 115 |
decay_parameters = [name for name in decay_parameters if "bias" not in name]
|
| 116 |
optimizer_grouped_parameters = [
|
| 117 |
{
|
| 118 |
+
"params": [
|
| 119 |
+
p
|
| 120 |
+
for n, p in model.named_parameters()
|
| 121 |
+
if (n in decay_parameters and p.requires_grad)
|
| 122 |
+
],
|
| 123 |
"weight_decay": training_args.weight_decay,
|
| 124 |
},
|
| 125 |
{
|
| 126 |
"params": [
|
| 127 |
+
p
|
| 128 |
+
for n, p in model.named_parameters()
|
| 129 |
+
if (n not in decay_parameters and p.requires_grad)
|
| 130 |
],
|
| 131 |
"weight_decay": 0.0,
|
| 132 |
},
|
| 133 |
]
|
| 134 |
+
|
| 135 |
optimizer = bnb.optim.Adam8bit(
|
| 136 |
optimizer_grouped_parameters,
|
| 137 |
betas=(training_args.adam_beta1, training_args.adam_beta2),
|