add eval benchmark callback (#441)
Browse files* add mmlu callback
* use hf dataset for mmlu evals
* default to mmlu-zs
* make sure to define all the explicit positional args
* include metrics in callback
* another callback fix for collator max len attribute
* fix mmlu evals
* sample benchmarks, ensure we drop long samples
* fix the data file
* fix elif and add better messaging
* more fixes
* rename mmlu to bench
* more fixes
* dataset handling and aggregate across benchmark
* better handling when no subjects
* benchmark callback has its own dataloader and collator
* fixes
* updated dataset
* more fixes
* missing transformers import
* improve support for customized dataset for bench evals
* gather benchmarks from all ranks
* fix for gather across multiple gpus
- requirements.txt +1 -0
- src/axolotl/utils/callbacks.py +210 -0
- src/axolotl/utils/distributed.py +38 -0
- src/axolotl/utils/trainer.py +71 -1
requirements.txt
CHANGED
|
@@ -4,6 +4,7 @@ transformers @ git+https://github.com/huggingface/transformers.git
|
|
| 4 |
bitsandbytes>=0.41.1
|
| 5 |
accelerate @ git+https://github.com/huggingface/accelerate@2a289f6108e77a77a4efffb3f6316bc98538413b
|
| 6 |
addict
|
|
|
|
| 7 |
fire
|
| 8 |
PyYAML>=6.0
|
| 9 |
datasets
|
|
|
|
| 4 |
bitsandbytes>=0.41.1
|
| 5 |
accelerate @ git+https://github.com/huggingface/accelerate@2a289f6108e77a77a4efffb3f6316bc98538413b
|
| 6 |
addict
|
| 7 |
+
evaluate
|
| 8 |
fire
|
| 9 |
PyYAML>=6.0
|
| 10 |
datasets
|
src/axolotl/utils/callbacks.py
CHANGED
|
@@ -1,9 +1,19 @@
|
|
| 1 |
"""Callbacks for Trainer class"""
|
| 2 |
|
|
|
|
|
|
|
| 3 |
import logging
|
| 4 |
import os
|
|
|
|
| 5 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 6 |
from optimum.bettertransformer import BetterTransformer
|
|
|
|
| 7 |
from transformers import (
|
| 8 |
TrainerCallback,
|
| 9 |
TrainerControl,
|
|
@@ -13,8 +23,19 @@ from transformers import (
|
|
| 13 |
from transformers.trainer_utils import PREFIX_CHECKPOINT_DIR, IntervalStrategy
|
| 14 |
|
| 15 |
from axolotl.utils.bench import log_gpu_memory_usage
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
|
| 17 |
LOG = logging.getLogger("axolotl.callbacks")
|
|
|
|
| 18 |
|
| 19 |
|
| 20 |
class SavePeftModelCallback(TrainerCallback): # pylint: disable=too-few-public-methods
|
|
@@ -96,3 +117,192 @@ class GPUStatsCallback(
|
|
| 96 |
log_gpu_memory_usage(LOG, "while training", self.cfg.device)
|
| 97 |
self.logged = True
|
| 98 |
return control
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
"""Callbacks for Trainer class"""
|
| 2 |
|
| 3 |
+
from __future__ import annotations
|
| 4 |
+
|
| 5 |
import logging
|
| 6 |
import os
|
| 7 |
+
from typing import TYPE_CHECKING, Dict, List
|
| 8 |
|
| 9 |
+
import evaluate
|
| 10 |
+
import numpy as np
|
| 11 |
+
import pandas as pd
|
| 12 |
+
import torch
|
| 13 |
+
import torch.distributed as dist
|
| 14 |
+
from datasets import load_dataset
|
| 15 |
from optimum.bettertransformer import BetterTransformer
|
| 16 |
+
from tqdm import tqdm
|
| 17 |
from transformers import (
|
| 18 |
TrainerCallback,
|
| 19 |
TrainerControl,
|
|
|
|
| 23 |
from transformers.trainer_utils import PREFIX_CHECKPOINT_DIR, IntervalStrategy
|
| 24 |
|
| 25 |
from axolotl.utils.bench import log_gpu_memory_usage
|
| 26 |
+
from axolotl.utils.distributed import (
|
| 27 |
+
barrier,
|
| 28 |
+
gather_scalar_from_all_ranks,
|
| 29 |
+
get_world_size,
|
| 30 |
+
is_main_process,
|
| 31 |
+
zero_first,
|
| 32 |
+
)
|
| 33 |
+
|
| 34 |
+
if TYPE_CHECKING:
|
| 35 |
+
from axolotl.utils.trainer import AxolotlTrainingArguments
|
| 36 |
|
| 37 |
LOG = logging.getLogger("axolotl.callbacks")
|
| 38 |
+
IGNORE_INDEX = -100
|
| 39 |
|
| 40 |
|
| 41 |
class SavePeftModelCallback(TrainerCallback): # pylint: disable=too-few-public-methods
|
|
|
|
| 117 |
log_gpu_memory_usage(LOG, "while training", self.cfg.device)
|
| 118 |
self.logged = True
|
| 119 |
return control
|
| 120 |
+
|
| 121 |
+
|
| 122 |
+
def bench_eval_callback_factory(trainer, tokenizer):
|
| 123 |
+
accuracy = evaluate.load("accuracy")
|
| 124 |
+
abcd_idx = [
|
| 125 |
+
tokenizer("A", add_special_tokens=False).input_ids[0],
|
| 126 |
+
tokenizer("B", add_special_tokens=False).input_ids[0],
|
| 127 |
+
tokenizer("C", add_special_tokens=False).input_ids[0],
|
| 128 |
+
tokenizer("D", add_special_tokens=False).input_ids[0],
|
| 129 |
+
tokenizer("E", add_special_tokens=False).input_ids[0],
|
| 130 |
+
tokenizer("F", add_special_tokens=False).input_ids[0],
|
| 131 |
+
tokenizer("G", add_special_tokens=False).input_ids[0],
|
| 132 |
+
]
|
| 133 |
+
bench_split = "eval"
|
| 134 |
+
|
| 135 |
+
def transform_bench_subject(example):
|
| 136 |
+
# Split on ':' and trim whitespace
|
| 137 |
+
parts = example["subject"].split(":")
|
| 138 |
+
first_part = (
|
| 139 |
+
parts[0].strip().lower().replace("-", "_")
|
| 140 |
+
) # Lowercase the first part
|
| 141 |
+
second_part = (
|
| 142 |
+
parts[1].strip().replace("-", "_") if len(parts) > 1 else "all"
|
| 143 |
+
) # Replace hyphens with underscores
|
| 144 |
+
|
| 145 |
+
# Return the transformed values
|
| 146 |
+
return {"name": first_part, "subject": second_part}
|
| 147 |
+
|
| 148 |
+
if trainer.args.bench_dataset == "mmlu-zs":
|
| 149 |
+
bench_dataset = load_dataset(
|
| 150 |
+
"openaccess-ai-collective/mmlu-evals",
|
| 151 |
+
data_files={
|
| 152 |
+
"eval": "zero_shot_mmlu_val.json",
|
| 153 |
+
"test": "zero_shot_mmlu_test.json",
|
| 154 |
+
},
|
| 155 |
+
)
|
| 156 |
+
# bench_dataset = bench_dataset.remove_columns("subject")
|
| 157 |
+
# MMLU Five-shot (Eval/Test only)
|
| 158 |
+
elif trainer.args.bench_dataset in ["mmlu", "mmlu-fs"]:
|
| 159 |
+
bench_dataset = load_dataset(
|
| 160 |
+
"openaccess-ai-collective/mmlu-evals",
|
| 161 |
+
data_files={
|
| 162 |
+
"eval": "five_shot_mmlu_val.json",
|
| 163 |
+
"test": "five_shot_mmlu_test.json",
|
| 164 |
+
},
|
| 165 |
+
)
|
| 166 |
+
# bench_dataset = bench_dataset.remove_columns('subject')
|
| 167 |
+
elif "/" in trainer.args.bench_dataset:
|
| 168 |
+
bench_ds = trainer.args.bench_dataset
|
| 169 |
+
bench_ds_name = "/".join(bench_ds.split("/", 2)[:2])
|
| 170 |
+
bench_ds_data_file = "/".join(bench_ds.split("/", 2)[2:])
|
| 171 |
+
bench_dataset = load_dataset(
|
| 172 |
+
bench_ds_name,
|
| 173 |
+
data_files={
|
| 174 |
+
"eval": bench_ds_data_file,
|
| 175 |
+
},
|
| 176 |
+
)
|
| 177 |
+
bench_dataset["eval"] = bench_dataset["eval"].map(transform_bench_subject)
|
| 178 |
+
else:
|
| 179 |
+
raise ValueError(
|
| 180 |
+
f"unhandled value `{trainer.args.bench_dataset}` for bench_dataset training args"
|
| 181 |
+
)
|
| 182 |
+
bench_dataset = bench_dataset[trainer.args.bench_split]
|
| 183 |
+
if trainer.args.max_bench_samples is not None:
|
| 184 |
+
bench_dataset = bench_dataset.select(range(trainer.args.max_bench_samples))
|
| 185 |
+
|
| 186 |
+
def tokenize_evals(example):
|
| 187 |
+
source = f"{tokenizer.bos_token}{example['input']}"
|
| 188 |
+
target = f"{example['output']}{tokenizer.eos_token}"
|
| 189 |
+
|
| 190 |
+
tokenized_source = tokenizer(
|
| 191 |
+
source,
|
| 192 |
+
max_length=2048,
|
| 193 |
+
truncation=True,
|
| 194 |
+
add_special_tokens=False,
|
| 195 |
+
)
|
| 196 |
+
tokenized_target = tokenizer(
|
| 197 |
+
target,
|
| 198 |
+
max_length=2048,
|
| 199 |
+
truncation=True,
|
| 200 |
+
add_special_tokens=False,
|
| 201 |
+
)
|
| 202 |
+
input_ids = tokenized_source["input_ids"] + tokenized_target["input_ids"]
|
| 203 |
+
labels = [IGNORE_INDEX] * len(tokenized_source["input_ids"]) + tokenized_target[
|
| 204 |
+
"input_ids"
|
| 205 |
+
]
|
| 206 |
+
|
| 207 |
+
return {
|
| 208 |
+
"input_ids": input_ids,
|
| 209 |
+
"labels": labels,
|
| 210 |
+
"subject": example["subject"],
|
| 211 |
+
}
|
| 212 |
+
|
| 213 |
+
with zero_first(is_main_process()):
|
| 214 |
+
bench_dataset = bench_dataset.map(tokenize_evals)
|
| 215 |
+
bench_dataset = bench_dataset.filter(lambda x: x["labels"][-2] in abcd_idx)
|
| 216 |
+
|
| 217 |
+
class BenchEvalCallback(TrainerCallback):
|
| 218 |
+
"""
|
| 219 |
+
TrainerCallback that runs the MMLU evals
|
| 220 |
+
"""
|
| 221 |
+
|
| 222 |
+
def on_evaluate(
|
| 223 |
+
self,
|
| 224 |
+
args: AxolotlTrainingArguments,
|
| 225 |
+
state: TrainerState, # pylint: disable=unused-argument
|
| 226 |
+
control: TrainerControl, # pylint: disable=unused-argument
|
| 227 |
+
metrics: Dict[str, float], # pylint: disable=unused-argument
|
| 228 |
+
**kwargs, # pylint: disable=unused-argument
|
| 229 |
+
):
|
| 230 |
+
data_loader = trainer.get_bench_dataloader(
|
| 231 |
+
bench_dataset.remove_columns(["input", "subject", "output", "name"])
|
| 232 |
+
)
|
| 233 |
+
trainer.model.eval()
|
| 234 |
+
preds, refs = [], []
|
| 235 |
+
loss_bench = 0
|
| 236 |
+
for batch in tqdm(data_loader, total=len(data_loader)):
|
| 237 |
+
(loss, logits, labels) = trainer.prediction_step(
|
| 238 |
+
trainer.model,
|
| 239 |
+
batch,
|
| 240 |
+
prediction_loss_only=False,
|
| 241 |
+
)
|
| 242 |
+
# There are two tokens, the output, and eos token.
|
| 243 |
+
for i, logit in enumerate(logits):
|
| 244 |
+
label_non_zero_id = (batch["labels"][i] != IGNORE_INDEX).nonzero()[
|
| 245 |
+
0
|
| 246 |
+
][0]
|
| 247 |
+
logit_abcd = logit[label_non_zero_id - 1][abcd_idx]
|
| 248 |
+
preds.append(torch.argmax(logit_abcd).item())
|
| 249 |
+
labels = labels[labels != IGNORE_INDEX].view(-1, 2)[:, 0]
|
| 250 |
+
refs += [
|
| 251 |
+
abcd_idx.index(label) if label in abcd_idx else -1
|
| 252 |
+
for label in labels.tolist()
|
| 253 |
+
]
|
| 254 |
+
loss_bench += loss.item()
|
| 255 |
+
# Extract results by subject.
|
| 256 |
+
bench_name = bench_dataset["name"]
|
| 257 |
+
bench_names: dict = {s: {"refs": [], "preds": []} for s in set(bench_name)}
|
| 258 |
+
for s, p, r in zip(bench_name, preds, refs): # pylint: disable=invalid-name
|
| 259 |
+
bench_names[s]["preds"].append(p)
|
| 260 |
+
bench_names[s]["refs"].append(r)
|
| 261 |
+
barrier()
|
| 262 |
+
local_bench_names = bench_names
|
| 263 |
+
gathered_bench_names: List[Dict] = [{} for _ in range(get_world_size())]
|
| 264 |
+
# Gather results from all GPUs to GPU 0
|
| 265 |
+
|
| 266 |
+
loss_bench_ranks = gather_scalar_from_all_ranks(
|
| 267 |
+
lambda: loss_bench, get_world_size()
|
| 268 |
+
)
|
| 269 |
+
len_data_loader_ranks = gather_scalar_from_all_ranks(
|
| 270 |
+
lambda: len(data_loader), get_world_size()
|
| 271 |
+
)
|
| 272 |
+
|
| 273 |
+
if not is_main_process():
|
| 274 |
+
dist.gather_object(local_bench_names, dst=0)
|
| 275 |
+
else:
|
| 276 |
+
dist.gather_object(local_bench_names, gathered_bench_names, dst=0)
|
| 277 |
+
bench_loss = sum(loss_bench_ranks) / sum(len_data_loader_ranks)
|
| 278 |
+
results = {"bench_loss": bench_loss}
|
| 279 |
+
|
| 280 |
+
# Combine results from all GPUs
|
| 281 |
+
combined_bench_names: Dict[str, Dict[str, List]] = {}
|
| 282 |
+
for bench_name in gathered_bench_names:
|
| 283 |
+
for name, data in bench_name.items():
|
| 284 |
+
if name not in combined_bench_names:
|
| 285 |
+
combined_bench_names[name] = {"refs": [], "preds": []}
|
| 286 |
+
combined_bench_names[name]["refs"].extend(data["refs"])
|
| 287 |
+
combined_bench_names[name]["preds"].extend(data["preds"])
|
| 288 |
+
|
| 289 |
+
bench_scores = []
|
| 290 |
+
for (
|
| 291 |
+
bench_name
|
| 292 |
+
) in combined_bench_names: # pylint: disable=consider-using-dict-items
|
| 293 |
+
bench_score = accuracy.compute(
|
| 294 |
+
references=combined_bench_names[bench_name]["refs"],
|
| 295 |
+
predictions=combined_bench_names[bench_name]["preds"],
|
| 296 |
+
)["accuracy"]
|
| 297 |
+
if not pd.isna(bench_score):
|
| 298 |
+
results[
|
| 299 |
+
f"bench_{bench_split}_accuracy_{bench_name}"
|
| 300 |
+
] = bench_score
|
| 301 |
+
bench_scores.append(bench_score)
|
| 302 |
+
else:
|
| 303 |
+
results[f"bench_{bench_split}_accuracy_{bench_name}"] = 0.0
|
| 304 |
+
bench_scores.append(0.0)
|
| 305 |
+
results[f"bench_{bench_split}_accuracy"] = np.mean(bench_scores)
|
| 306 |
+
trainer.log(results)
|
| 307 |
+
|
| 308 |
+
return BenchEvalCallback
|
src/axolotl/utils/distributed.py
CHANGED
|
@@ -1,8 +1,10 @@
|
|
| 1 |
"""
|
| 2 |
utility helpers for distributed checks
|
| 3 |
"""
|
|
|
|
| 4 |
from contextlib import contextmanager
|
| 5 |
|
|
|
|
| 6 |
import torch.distributed as dist
|
| 7 |
from accelerate import Accelerator
|
| 8 |
|
|
@@ -43,6 +45,10 @@ def is_main_process():
|
|
| 43 |
return dist.get_rank() == 0
|
| 44 |
|
| 45 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 46 |
@contextmanager
|
| 47 |
def zero_first(is_main):
|
| 48 |
"""
|
|
@@ -53,3 +59,35 @@ def zero_first(is_main):
|
|
| 53 |
yield
|
| 54 |
if is_main: # then rank 0 waits after it has run the context
|
| 55 |
barrier()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
"""
|
| 2 |
utility helpers for distributed checks
|
| 3 |
"""
|
| 4 |
+
import os
|
| 5 |
from contextlib import contextmanager
|
| 6 |
|
| 7 |
+
import torch
|
| 8 |
import torch.distributed as dist
|
| 9 |
from accelerate import Accelerator
|
| 10 |
|
|
|
|
| 45 |
return dist.get_rank() == 0
|
| 46 |
|
| 47 |
|
| 48 |
+
def get_world_size():
|
| 49 |
+
return int(os.getenv("WORLD_SIZE", "1"))
|
| 50 |
+
|
| 51 |
+
|
| 52 |
@contextmanager
|
| 53 |
def zero_first(is_main):
|
| 54 |
"""
|
|
|
|
| 59 |
yield
|
| 60 |
if is_main: # then rank 0 waits after it has run the context
|
| 61 |
barrier()
|
| 62 |
+
|
| 63 |
+
|
| 64 |
+
def gather_scalar_from_all_ranks(fn, world_size=1): # pylint: disable=invalid-name
|
| 65 |
+
"""
|
| 66 |
+
Run a callable 'fn' on all ranks and gather the results on the specified rank.
|
| 67 |
+
|
| 68 |
+
Args:
|
| 69 |
+
- fn (callable): A function that computes the value. This should not have any side effects.
|
| 70 |
+
- rank (int, optional): The rank that gathers the values. Default is 0.
|
| 71 |
+
- world_size (int, optional): Total number of processes in the current distributed setup.
|
| 72 |
+
|
| 73 |
+
Returns:
|
| 74 |
+
- A list of computed values from all ranks if on the gathering rank, otherwise None.
|
| 75 |
+
"""
|
| 76 |
+
value_scalar = fn()
|
| 77 |
+
value_tensor = torch.tensor(value_scalar, device=dist.get_rank()).float()
|
| 78 |
+
|
| 79 |
+
if not is_main_process():
|
| 80 |
+
dist.gather(value_tensor, dst=0)
|
| 81 |
+
else:
|
| 82 |
+
gathered_tensors = [torch.zeros_like(value_tensor) for _ in range(world_size)]
|
| 83 |
+
dist.gather(value_tensor, gather_list=gathered_tensors, dst=0)
|
| 84 |
+
|
| 85 |
+
# Convert tensors back to their original type (int or float)
|
| 86 |
+
gathered_values = []
|
| 87 |
+
for tensor in gathered_tensors:
|
| 88 |
+
if tensor == tensor.int():
|
| 89 |
+
gathered_values.append(int(tensor.item()))
|
| 90 |
+
else:
|
| 91 |
+
gathered_values.append(float(tensor.item()))
|
| 92 |
+
return gathered_values
|
| 93 |
+
return None
|
src/axolotl/utils/trainer.py
CHANGED
|
@@ -12,9 +12,15 @@ from typing import Optional, Union
|
|
| 12 |
|
| 13 |
import numpy as np
|
| 14 |
import torch.cuda
|
|
|
|
| 15 |
from datasets import Dataset, set_caching_enabled
|
| 16 |
from torch.optim.lr_scheduler import OneCycleLR
|
| 17 |
-
from torch.utils.data import
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
from transformers import EarlyStoppingCallback, Trainer, TrainingArguments
|
| 19 |
from transformers.trainer_pt_utils import SequentialDistributedSampler
|
| 20 |
|
|
@@ -23,6 +29,7 @@ from axolotl.utils.callbacks import (
|
|
| 23 |
GPUStatsCallback,
|
| 24 |
SaveBetterTransformerModelCallback,
|
| 25 |
SavePeftModelCallback,
|
|
|
|
| 26 |
)
|
| 27 |
from axolotl.utils.collators import DataCollatorForSeq2Seq
|
| 28 |
from axolotl.utils.dataloader import MultipackDistributedDataloader
|
|
@@ -127,6 +134,27 @@ class AxolotlTrainingArguments(TrainingArguments):
|
|
| 127 |
default=None,
|
| 128 |
metadata={"help": "how many warmup steps to take after reset for ReLoRA"},
|
| 129 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 130 |
|
| 131 |
|
| 132 |
class AxolotlTrainer(Trainer):
|
|
@@ -136,6 +164,10 @@ class AxolotlTrainer(Trainer):
|
|
| 136 |
|
| 137 |
args = None # type: AxolotlTrainingArguments
|
| 138 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 139 |
def create_scheduler(
|
| 140 |
self, num_training_steps: int, optimizer: torch.optim.Optimizer = None
|
| 141 |
):
|
|
@@ -226,6 +258,31 @@ class AxolotlTrainer(Trainer):
|
|
| 226 |
)
|
| 227 |
return super().get_eval_dataloader(eval_dataset)
|
| 228 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 229 |
def compute_loss(self, model, inputs, return_outputs=False):
|
| 230 |
# use one's weighted cross entropy loss calc
|
| 231 |
# if self.args.sample_packing:
|
|
@@ -517,6 +574,11 @@ def setup_trainer(cfg, train_dataset, eval_dataset, model, tokenizer, total_num_
|
|
| 517 |
"steps" if cfg.save_steps else "epoch"
|
| 518 |
)
|
| 519 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 520 |
training_args = AxolotlTrainingArguments( # pylint: disable=unexpected-keyword-arg
|
| 521 |
max_steps=total_num_steps if cfg.max_steps else -1,
|
| 522 |
max_seq_length=cfg.sequence_len,
|
|
@@ -629,8 +691,16 @@ def setup_trainer(cfg, train_dataset, eval_dataset, model, tokenizer, total_num_
|
|
| 629 |
return_tensors="pt",
|
| 630 |
**data_collator_kwargs,
|
| 631 |
),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 632 |
callbacks=callbacks,
|
| 633 |
**trainer_kwargs,
|
| 634 |
)
|
| 635 |
|
|
|
|
|
|
|
|
|
|
| 636 |
return trainer
|
|
|
|
| 12 |
|
| 13 |
import numpy as np
|
| 14 |
import torch.cuda
|
| 15 |
+
import transformers
|
| 16 |
from datasets import Dataset, set_caching_enabled
|
| 17 |
from torch.optim.lr_scheduler import OneCycleLR
|
| 18 |
+
from torch.utils.data import (
|
| 19 |
+
DataLoader,
|
| 20 |
+
DistributedSampler,
|
| 21 |
+
RandomSampler,
|
| 22 |
+
SequentialSampler,
|
| 23 |
+
)
|
| 24 |
from transformers import EarlyStoppingCallback, Trainer, TrainingArguments
|
| 25 |
from transformers.trainer_pt_utils import SequentialDistributedSampler
|
| 26 |
|
|
|
|
| 29 |
GPUStatsCallback,
|
| 30 |
SaveBetterTransformerModelCallback,
|
| 31 |
SavePeftModelCallback,
|
| 32 |
+
bench_eval_callback_factory,
|
| 33 |
)
|
| 34 |
from axolotl.utils.collators import DataCollatorForSeq2Seq
|
| 35 |
from axolotl.utils.dataloader import MultipackDistributedDataloader
|
|
|
|
| 134 |
default=None,
|
| 135 |
metadata={"help": "how many warmup steps to take after reset for ReLoRA"},
|
| 136 |
)
|
| 137 |
+
bench_split: Optional[str] = field(
|
| 138 |
+
default="eval", metadata={"help": "The benchmark split to run on"}
|
| 139 |
+
)
|
| 140 |
+
bench_dataset: Optional[str] = field(
|
| 141 |
+
default="pharaouk/dharma-1/dharma_1_mini.json",
|
| 142 |
+
metadata={
|
| 143 |
+
"help": "Benchmark dataset to use: options are `mmlu-zs`, `mmlu-fs`, or the full path to the dataset file"
|
| 144 |
+
},
|
| 145 |
+
)
|
| 146 |
+
do_bench_eval: Optional[bool] = field(
|
| 147 |
+
default=False, metadata={"help": "Whether to run the Benchmark evaluation."}
|
| 148 |
+
)
|
| 149 |
+
max_bench_samples: Optional[int] = field(
|
| 150 |
+
default=None,
|
| 151 |
+
metadata={
|
| 152 |
+
"help": "If set, only evaluates on `max_bench_samples` of the benchmark dataset."
|
| 153 |
+
},
|
| 154 |
+
)
|
| 155 |
+
bench_source_max_len: int = field(
|
| 156 |
+
default=2048, metadata={"help": "Maximum source sequence length for bench."}
|
| 157 |
+
)
|
| 158 |
|
| 159 |
|
| 160 |
class AxolotlTrainer(Trainer):
|
|
|
|
| 164 |
|
| 165 |
args = None # type: AxolotlTrainingArguments
|
| 166 |
|
| 167 |
+
def __init__(self, *args, bench_data_collator=None, **kwargs):
|
| 168 |
+
self.bench_data_collator = bench_data_collator
|
| 169 |
+
super().__init__(*args, **kwargs)
|
| 170 |
+
|
| 171 |
def create_scheduler(
|
| 172 |
self, num_training_steps: int, optimizer: torch.optim.Optimizer = None
|
| 173 |
):
|
|
|
|
| 258 |
)
|
| 259 |
return super().get_eval_dataloader(eval_dataset)
|
| 260 |
|
| 261 |
+
def _get_bench_sampler(
|
| 262 |
+
self, bench_dataset: Dataset
|
| 263 |
+
) -> Optional[torch.utils.data.Sampler]:
|
| 264 |
+
if self.args.world_size <= 1:
|
| 265 |
+
return SequentialSampler(bench_dataset)
|
| 266 |
+
return None
|
| 267 |
+
|
| 268 |
+
def get_bench_dataloader(
|
| 269 |
+
self,
|
| 270 |
+
bench_dataset: Dataset,
|
| 271 |
+
) -> Union[DataLoader, MultipackDistributedDataloader]:
|
| 272 |
+
dataloader_params = {
|
| 273 |
+
"batch_size": self.args.eval_batch_size,
|
| 274 |
+
"collate_fn": self.bench_data_collator,
|
| 275 |
+
"num_workers": self.args.dataloader_num_workers,
|
| 276 |
+
"pin_memory": self.args.dataloader_pin_memory,
|
| 277 |
+
}
|
| 278 |
+
|
| 279 |
+
if not isinstance(bench_dataset, torch.utils.data.IterableDataset):
|
| 280 |
+
dataloader_params["sampler"] = self._get_bench_sampler(bench_dataset)
|
| 281 |
+
dataloader_params["drop_last"] = self.args.dataloader_drop_last
|
| 282 |
+
|
| 283 |
+
return DataLoader(bench_dataset, **dataloader_params)
|
| 284 |
+
# return self.accelerator.prepare(DataLoader(bench_dataset, **dataloader_params))
|
| 285 |
+
|
| 286 |
def compute_loss(self, model, inputs, return_outputs=False):
|
| 287 |
# use one's weighted cross entropy loss calc
|
| 288 |
# if self.args.sample_packing:
|
|
|
|
| 574 |
"steps" if cfg.save_steps else "epoch"
|
| 575 |
)
|
| 576 |
|
| 577 |
+
if cfg.do_bench_eval:
|
| 578 |
+
training_arguments_kwargs["do_bench_eval"] = cfg.do_bench_eval
|
| 579 |
+
if cfg.bench_dataset:
|
| 580 |
+
training_arguments_kwargs["bench_dataset"] = cfg.bench_dataset
|
| 581 |
+
|
| 582 |
training_args = AxolotlTrainingArguments( # pylint: disable=unexpected-keyword-arg
|
| 583 |
max_steps=total_num_steps if cfg.max_steps else -1,
|
| 584 |
max_seq_length=cfg.sequence_len,
|
|
|
|
| 691 |
return_tensors="pt",
|
| 692 |
**data_collator_kwargs,
|
| 693 |
),
|
| 694 |
+
bench_data_collator=transformers.DataCollatorForSeq2Seq(
|
| 695 |
+
tokenizer,
|
| 696 |
+
return_tensors="pt",
|
| 697 |
+
**data_collator_kwargs,
|
| 698 |
+
),
|
| 699 |
callbacks=callbacks,
|
| 700 |
**trainer_kwargs,
|
| 701 |
)
|
| 702 |
|
| 703 |
+
if cfg.do_bench_eval:
|
| 704 |
+
trainer.add_callback(bench_eval_callback_factory(trainer, tokenizer))
|
| 705 |
+
|
| 706 |
return trainer
|