refactor setup trainer so we can add more hooks (#773)
Browse files* refactor setup trainer so we can add more hooks
* Remove stray comma
- src/axolotl/core/__init__.py +0 -0
- src/axolotl/core/trainer_builder.py +689 -0
- src/axolotl/utils/callbacks.py +1 -1
- src/axolotl/utils/trainer.py +9 -531
src/axolotl/core/__init__.py
ADDED
|
File without changes
|
src/axolotl/core/trainer_builder.py
ADDED
|
@@ -0,0 +1,689 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Builder for the training args and trainer
|
| 3 |
+
"""
|
| 4 |
+
|
| 5 |
+
import abc
|
| 6 |
+
import importlib
|
| 7 |
+
import logging
|
| 8 |
+
import math
|
| 9 |
+
import os
|
| 10 |
+
import sys
|
| 11 |
+
from abc import abstractmethod
|
| 12 |
+
from dataclasses import dataclass, field
|
| 13 |
+
from functools import partial
|
| 14 |
+
from pathlib import Path
|
| 15 |
+
from typing import Optional, Union
|
| 16 |
+
|
| 17 |
+
import torch
|
| 18 |
+
import transformers
|
| 19 |
+
from datasets import Dataset
|
| 20 |
+
from torch.optim.lr_scheduler import OneCycleLR
|
| 21 |
+
from torch.utils.data import DataLoader, DistributedSampler, SequentialSampler
|
| 22 |
+
from transformers import EarlyStoppingCallback, Trainer, TrainingArguments
|
| 23 |
+
from transformers.trainer_pt_utils import SequentialDistributedSampler
|
| 24 |
+
|
| 25 |
+
from axolotl.monkeypatch.relora import ReLoRACallback, ReLoRAScheduler
|
| 26 |
+
from axolotl.utils.callbacks import (
|
| 27 |
+
EvalFirstStepCallback,
|
| 28 |
+
GPUStatsCallback,
|
| 29 |
+
SaveAxolotlConfigtoWandBCallback,
|
| 30 |
+
SaveBetterTransformerModelCallback,
|
| 31 |
+
bench_eval_callback_factory,
|
| 32 |
+
log_prediction_callback_factory,
|
| 33 |
+
)
|
| 34 |
+
from axolotl.utils.collators import DataCollatorForSeq2Seq
|
| 35 |
+
from axolotl.utils.dataloader import MultipackDistributedDataloader
|
| 36 |
+
from axolotl.utils.schedulers import get_cosine_schedule_with_quadratic_warmup
|
| 37 |
+
|
| 38 |
+
try:
|
| 39 |
+
import torch._dynamo # pylint: disable=ungrouped-imports
|
| 40 |
+
except ImportError:
|
| 41 |
+
pass
|
| 42 |
+
|
| 43 |
+
LOG = logging.getLogger("axolotl.core.trainer_builder")
|
| 44 |
+
|
| 45 |
+
|
| 46 |
+
@dataclass
|
| 47 |
+
class AxolotlTrainingArguments(TrainingArguments):
|
| 48 |
+
"""
|
| 49 |
+
Extend the base TrainingArguments for axolotl helpers
|
| 50 |
+
"""
|
| 51 |
+
|
| 52 |
+
lr_quadratic_warmup: bool = field(
|
| 53 |
+
default=False,
|
| 54 |
+
metadata={"help": "Use quadratic warmup for cosine scheduling."},
|
| 55 |
+
)
|
| 56 |
+
sample_packing: bool = field(
|
| 57 |
+
default=False,
|
| 58 |
+
metadata={"help": "Use sample packing for efficient training."},
|
| 59 |
+
)
|
| 60 |
+
eval_sample_packing: Optional[bool] = field(
|
| 61 |
+
default=None,
|
| 62 |
+
metadata={"help": "Use sample packing for efficient evals."},
|
| 63 |
+
)
|
| 64 |
+
sample_packing_efficiency: float = field(
|
| 65 |
+
default=1.0,
|
| 66 |
+
metadata={"help": "Sample packing efficiency for calculating batch length."},
|
| 67 |
+
)
|
| 68 |
+
max_seq_length: int = field(
|
| 69 |
+
default=2048,
|
| 70 |
+
metadata={"help": "The maximum sequence length the model can handle"},
|
| 71 |
+
)
|
| 72 |
+
sample_packing_seq_len_multiplier: int = field(
|
| 73 |
+
default=1,
|
| 74 |
+
metadata={"help": "the multiplier for the max len for packed sequences"},
|
| 75 |
+
)
|
| 76 |
+
relora_steps: Optional[int] = field(
|
| 77 |
+
default=None,
|
| 78 |
+
metadata={"help": "how often to reset for ReLoRA"},
|
| 79 |
+
)
|
| 80 |
+
relora_warmup_steps: Optional[int] = field(
|
| 81 |
+
default=None,
|
| 82 |
+
metadata={"help": "how many warmup steps to take after reset for ReLoRA"},
|
| 83 |
+
)
|
| 84 |
+
bench_split: Optional[str] = field(
|
| 85 |
+
default="eval", metadata={"help": "The benchmark split to run on"}
|
| 86 |
+
)
|
| 87 |
+
bench_dataset: Optional[str] = field(
|
| 88 |
+
default="pharaouk/dharma-1/dharma_1_mini.json",
|
| 89 |
+
metadata={
|
| 90 |
+
"help": "Benchmark dataset to use: options are `mmlu-zs`, `mmlu-fs`, or the full path to the dataset file"
|
| 91 |
+
},
|
| 92 |
+
)
|
| 93 |
+
do_bench_eval: Optional[bool] = field(
|
| 94 |
+
default=False, metadata={"help": "Whether to run the Benchmark evaluation."}
|
| 95 |
+
)
|
| 96 |
+
max_bench_samples: Optional[int] = field(
|
| 97 |
+
default=None,
|
| 98 |
+
metadata={
|
| 99 |
+
"help": "If set, only evaluates on `max_bench_samples` of the benchmark dataset."
|
| 100 |
+
},
|
| 101 |
+
)
|
| 102 |
+
bench_source_max_len: int = field(
|
| 103 |
+
default=2048, metadata={"help": "Maximum source sequence length for bench."}
|
| 104 |
+
)
|
| 105 |
+
|
| 106 |
+
|
| 107 |
+
class AxolotlTrainer(Trainer):
|
| 108 |
+
"""
|
| 109 |
+
Extend the base Trainer for axolotl helpers
|
| 110 |
+
"""
|
| 111 |
+
|
| 112 |
+
args = None # type: AxolotlTrainingArguments
|
| 113 |
+
|
| 114 |
+
def __init__(self, *args, bench_data_collator=None, **kwargs):
|
| 115 |
+
self.bench_data_collator = bench_data_collator
|
| 116 |
+
super().__init__(*args, **kwargs)
|
| 117 |
+
|
| 118 |
+
def create_scheduler(
|
| 119 |
+
self, num_training_steps: int, optimizer: torch.optim.Optimizer = None
|
| 120 |
+
):
|
| 121 |
+
"""
|
| 122 |
+
Setup the scheduler. The optimizer of the trainer must have been set up either before this method is called or
|
| 123 |
+
passed as an argument.
|
| 124 |
+
|
| 125 |
+
Args:
|
| 126 |
+
num_training_steps (int): The number of training steps to do.
|
| 127 |
+
optimizer (torch.optim.Optimizer): The training optimizer
|
| 128 |
+
"""
|
| 129 |
+
|
| 130 |
+
# fmt: off
|
| 131 |
+
if self.lr_scheduler is None: # type: ignore # pylint: disable=access-member-before-definition
|
| 132 |
+
# fmt: on
|
| 133 |
+
if (
|
| 134 |
+
self.args.lr_scheduler_type == "cosine"
|
| 135 |
+
and self.args.lr_quadratic_warmup is True
|
| 136 |
+
):
|
| 137 |
+
self.lr_scheduler = get_cosine_schedule_with_quadratic_warmup( # pylint: disable=attribute-defined-outside-init
|
| 138 |
+
optimizer,
|
| 139 |
+
num_warmup_steps=self.args.get_warmup_steps(num_training_steps),
|
| 140 |
+
num_training_steps=num_training_steps,
|
| 141 |
+
)
|
| 142 |
+
else:
|
| 143 |
+
return super().create_scheduler(num_training_steps, optimizer)
|
| 144 |
+
return self.lr_scheduler
|
| 145 |
+
|
| 146 |
+
def _get_train_sampler(self) -> Optional[torch.utils.data.Sampler]:
|
| 147 |
+
if self.args.world_size > 1 and self.args.sample_packing:
|
| 148 |
+
return DistributedSampler(
|
| 149 |
+
self.train_dataset,
|
| 150 |
+
num_replicas=self.args.world_size,
|
| 151 |
+
rank=self.args.process_index,
|
| 152 |
+
seed=self.args.seed,
|
| 153 |
+
)
|
| 154 |
+
return super()._get_train_sampler()
|
| 155 |
+
|
| 156 |
+
def _get_eval_sampler(
|
| 157 |
+
self, eval_dataset: Dataset
|
| 158 |
+
) -> Optional[torch.utils.data.Sampler]:
|
| 159 |
+
if (
|
| 160 |
+
self.args.world_size > 1
|
| 161 |
+
and self.args.sample_packing
|
| 162 |
+
and self.args.eval_sample_packing is not False
|
| 163 |
+
):
|
| 164 |
+
return SequentialDistributedSampler(
|
| 165 |
+
eval_dataset,
|
| 166 |
+
num_replicas=self.args.world_size,
|
| 167 |
+
rank=self.args.process_index,
|
| 168 |
+
batch_size=self.args.per_device_eval_batch_size,
|
| 169 |
+
)
|
| 170 |
+
return super()._get_eval_sampler(eval_dataset)
|
| 171 |
+
|
| 172 |
+
def get_train_dataloader(self) -> Union[DataLoader, MultipackDistributedDataloader]:
|
| 173 |
+
if self.args.sample_packing:
|
| 174 |
+
train_sampler = self._get_train_sampler()
|
| 175 |
+
return self.accelerator.prepare(
|
| 176 |
+
MultipackDistributedDataloader(
|
| 177 |
+
self.train_dataset,
|
| 178 |
+
batch_size=self._train_batch_size,
|
| 179 |
+
seq_max_length=self.args.max_seq_length,
|
| 180 |
+
collate_fn=self.data_collator,
|
| 181 |
+
sampler=train_sampler,
|
| 182 |
+
packing_efficiency_estimate=self.args.sample_packing_efficiency,
|
| 183 |
+
sample_packing_seq_len_multiplier=self.args.sample_packing_seq_len_multiplier,
|
| 184 |
+
device_count=int(os.environ.get("WORLD_SIZE", 1)),
|
| 185 |
+
)
|
| 186 |
+
)
|
| 187 |
+
return super().get_train_dataloader()
|
| 188 |
+
|
| 189 |
+
def get_eval_dataloader(
|
| 190 |
+
self, eval_dataset: Optional[Dataset] = None
|
| 191 |
+
) -> Union[DataLoader, MultipackDistributedDataloader]:
|
| 192 |
+
if self.args.sample_packing and self.args.eval_sample_packing is not False:
|
| 193 |
+
eval_dataset = (
|
| 194 |
+
eval_dataset if eval_dataset is not None else self.eval_dataset
|
| 195 |
+
)
|
| 196 |
+
|
| 197 |
+
eval_sampler = self._get_eval_sampler(eval_dataset)
|
| 198 |
+
return self.accelerator.prepare(
|
| 199 |
+
MultipackDistributedDataloader(
|
| 200 |
+
eval_dataset,
|
| 201 |
+
batch_size=self.args.eval_batch_size,
|
| 202 |
+
seq_max_length=self.args.max_seq_length,
|
| 203 |
+
collate_fn=self.data_collator,
|
| 204 |
+
sampler=eval_sampler,
|
| 205 |
+
packing_efficiency_estimate=self.args.sample_packing_efficiency,
|
| 206 |
+
sample_packing_seq_len_multiplier=self.args.eval_batch_size,
|
| 207 |
+
device_count=int(os.environ.get("WORLD_SIZE", 1)),
|
| 208 |
+
)
|
| 209 |
+
)
|
| 210 |
+
return super().get_eval_dataloader(eval_dataset)
|
| 211 |
+
|
| 212 |
+
def _get_bench_sampler(
|
| 213 |
+
self, bench_dataset: Dataset
|
| 214 |
+
) -> Optional[torch.utils.data.Sampler]:
|
| 215 |
+
if self.args.world_size <= 1:
|
| 216 |
+
return SequentialSampler(bench_dataset)
|
| 217 |
+
return None
|
| 218 |
+
|
| 219 |
+
def get_bench_dataloader(
|
| 220 |
+
self,
|
| 221 |
+
bench_dataset: Dataset,
|
| 222 |
+
) -> Union[DataLoader, MultipackDistributedDataloader]:
|
| 223 |
+
dataloader_params = {
|
| 224 |
+
"batch_size": self.args.eval_batch_size,
|
| 225 |
+
"collate_fn": self.bench_data_collator,
|
| 226 |
+
"num_workers": self.args.dataloader_num_workers,
|
| 227 |
+
"pin_memory": self.args.dataloader_pin_memory,
|
| 228 |
+
}
|
| 229 |
+
|
| 230 |
+
if not isinstance(bench_dataset, torch.utils.data.IterableDataset):
|
| 231 |
+
dataloader_params["sampler"] = self._get_bench_sampler(bench_dataset)
|
| 232 |
+
dataloader_params["drop_last"] = self.args.dataloader_drop_last
|
| 233 |
+
|
| 234 |
+
return DataLoader(bench_dataset, **dataloader_params)
|
| 235 |
+
# return self.accelerator.prepare(DataLoader(bench_dataset, **dataloader_params))
|
| 236 |
+
|
| 237 |
+
def compute_loss(self, model, inputs, return_outputs=False):
|
| 238 |
+
# use one's weighted cross entropy loss calc
|
| 239 |
+
# if self.args.sample_packing:
|
| 240 |
+
# labels = inputs.pop("labels")
|
| 241 |
+
# outputs = model(**inputs)
|
| 242 |
+
# loss = trainer_weighted_loss(outputs, labels, shift_labels=True)
|
| 243 |
+
# return (loss, outputs) if return_outputs else loss
|
| 244 |
+
return super().compute_loss(model, inputs, return_outputs=return_outputs)
|
| 245 |
+
|
| 246 |
+
|
| 247 |
+
class OneCycleLRSchedulerTrainer(AxolotlTrainer):
|
| 248 |
+
"""
|
| 249 |
+
Trainer subclass that uses the OneCycleLR scheduler
|
| 250 |
+
"""
|
| 251 |
+
|
| 252 |
+
def __init__(self, *args, **kwargs):
|
| 253 |
+
super().__init__(*args, **kwargs)
|
| 254 |
+
self.lr_scheduler = None
|
| 255 |
+
|
| 256 |
+
def create_scheduler(
|
| 257 |
+
self,
|
| 258 |
+
num_training_steps: int,
|
| 259 |
+
optimizer: Optional[torch.optim.Optimizer] = None,
|
| 260 |
+
):
|
| 261 |
+
optimizer = self.optimizer if optimizer is None else optimizer
|
| 262 |
+
num_warmup_steps = self.args.get_warmup_steps(num_training_steps)
|
| 263 |
+
pct_start = num_warmup_steps / num_training_steps
|
| 264 |
+
|
| 265 |
+
self.lr_scheduler = OneCycleLR(
|
| 266 |
+
optimizer,
|
| 267 |
+
max_lr=self.args.learning_rate,
|
| 268 |
+
total_steps=num_training_steps,
|
| 269 |
+
pct_start=pct_start,
|
| 270 |
+
div_factor=6,
|
| 271 |
+
)
|
| 272 |
+
|
| 273 |
+
return self.lr_scheduler
|
| 274 |
+
|
| 275 |
+
|
| 276 |
+
class ReLoRATrainer(AxolotlTrainer):
|
| 277 |
+
"""
|
| 278 |
+
Trainer subclass that uses the OneCycleLR scheduler
|
| 279 |
+
"""
|
| 280 |
+
|
| 281 |
+
def __init__(self, *args, **kwargs):
|
| 282 |
+
super().__init__(*args, **kwargs)
|
| 283 |
+
self.lr_scheduler = None
|
| 284 |
+
|
| 285 |
+
def create_scheduler(
|
| 286 |
+
self,
|
| 287 |
+
num_training_steps: int,
|
| 288 |
+
optimizer: Optional[torch.optim.Optimizer] = None,
|
| 289 |
+
):
|
| 290 |
+
optimizer = self.optimizer if optimizer is None else optimizer
|
| 291 |
+
lr_scheduler = super().create_scheduler(num_training_steps, optimizer)
|
| 292 |
+
|
| 293 |
+
if self.args.relora_steps:
|
| 294 |
+
warmup_steps = (
|
| 295 |
+
self.args.relora_warmup_steps if self.args.relora_warmup_steps else 10
|
| 296 |
+
)
|
| 297 |
+
self.lr_scheduler = ReLoRAScheduler(
|
| 298 |
+
optimizer,
|
| 299 |
+
lr_scheduler,
|
| 300 |
+
self.args.relora_steps,
|
| 301 |
+
warmup_steps,
|
| 302 |
+
)
|
| 303 |
+
else:
|
| 304 |
+
self.lr_scheduler = lr_scheduler
|
| 305 |
+
|
| 306 |
+
return self.lr_scheduler
|
| 307 |
+
|
| 308 |
+
|
| 309 |
+
class TrainerBuilderBase(abc.ABC):
|
| 310 |
+
"""
|
| 311 |
+
Base class for trainer builder
|
| 312 |
+
"""
|
| 313 |
+
|
| 314 |
+
_train_dataset = None
|
| 315 |
+
_eval_dataset = None
|
| 316 |
+
|
| 317 |
+
def __init__(self, cfg, model, tokenizer):
|
| 318 |
+
self.cfg = cfg
|
| 319 |
+
self.model = model
|
| 320 |
+
self.tokenizer = tokenizer
|
| 321 |
+
|
| 322 |
+
@property
|
| 323 |
+
def train_dataset(self):
|
| 324 |
+
return self._train_dataset
|
| 325 |
+
|
| 326 |
+
@train_dataset.setter
|
| 327 |
+
def train_dataset(self, dataset):
|
| 328 |
+
self._train_dataset = dataset
|
| 329 |
+
|
| 330 |
+
@property
|
| 331 |
+
def eval_dataset(self):
|
| 332 |
+
return self._eval_dataset
|
| 333 |
+
|
| 334 |
+
@eval_dataset.setter
|
| 335 |
+
def eval_dataset(self, dataset):
|
| 336 |
+
self._eval_dataset = dataset
|
| 337 |
+
|
| 338 |
+
@abstractmethod
|
| 339 |
+
def build(self, total_num_steps):
|
| 340 |
+
pass
|
| 341 |
+
|
| 342 |
+
@abstractmethod
|
| 343 |
+
def get_callbacks(self):
|
| 344 |
+
pass
|
| 345 |
+
|
| 346 |
+
@abstractmethod
|
| 347 |
+
def get_post_trainer_create_callbacks(self, trainer):
|
| 348 |
+
"""
|
| 349 |
+
Callbacks added after the trainer is created, usually b/c these need access to the trainer
|
| 350 |
+
"""
|
| 351 |
+
|
| 352 |
+
|
| 353 |
+
class HFCausalTrainerBuilder(TrainerBuilderBase):
|
| 354 |
+
"""
|
| 355 |
+
Build the HuggingFace training args/trainer for Causal models
|
| 356 |
+
"""
|
| 357 |
+
|
| 358 |
+
def hook_pre_create_training_args(self, training_arguments_kwargs):
|
| 359 |
+
# TODO
|
| 360 |
+
return training_arguments_kwargs
|
| 361 |
+
|
| 362 |
+
def hook_post_create_training_args(self, training_arguments):
|
| 363 |
+
# TODO
|
| 364 |
+
return training_arguments
|
| 365 |
+
|
| 366 |
+
def hook_pre_create_trainer(self, trainer_kwargs, trainer_cls):
|
| 367 |
+
# TODO
|
| 368 |
+
return trainer_kwargs, trainer_cls
|
| 369 |
+
|
| 370 |
+
def hook_post_create_trainer(self, trainer):
|
| 371 |
+
# TODO
|
| 372 |
+
return trainer
|
| 373 |
+
|
| 374 |
+
def get_callbacks(self):
|
| 375 |
+
callbacks = []
|
| 376 |
+
callbacks.append(GPUStatsCallback(self.cfg))
|
| 377 |
+
callbacks.append(EvalFirstStepCallback)
|
| 378 |
+
|
| 379 |
+
if self.cfg.relora_steps:
|
| 380 |
+
callbacks.append(ReLoRACallback(self.cfg))
|
| 381 |
+
|
| 382 |
+
if (
|
| 383 |
+
hasattr(self.model, "use_bettertransformer")
|
| 384 |
+
and self.model.use_bettertransformer is True
|
| 385 |
+
):
|
| 386 |
+
callbacks.append(SaveBetterTransformerModelCallback)
|
| 387 |
+
|
| 388 |
+
if self.cfg.use_wandb:
|
| 389 |
+
callbacks.append(
|
| 390 |
+
SaveAxolotlConfigtoWandBCallback(self.cfg.axolotl_config_path)
|
| 391 |
+
)
|
| 392 |
+
|
| 393 |
+
return callbacks
|
| 394 |
+
|
| 395 |
+
def get_post_trainer_create_callbacks(self, trainer):
|
| 396 |
+
callbacks = []
|
| 397 |
+
if self.cfg.use_wandb and self.cfg.eval_table_size > 0:
|
| 398 |
+
LogPredictionCallback = log_prediction_callback_factory(
|
| 399 |
+
trainer, self.tokenizer
|
| 400 |
+
)
|
| 401 |
+
callbacks.append(LogPredictionCallback(self.cfg))
|
| 402 |
+
|
| 403 |
+
if self.cfg.do_bench_eval:
|
| 404 |
+
callbacks.append(bench_eval_callback_factory(trainer, self.tokenizer))
|
| 405 |
+
|
| 406 |
+
if self.cfg.early_stopping_patience:
|
| 407 |
+
early_stop_cb = EarlyStoppingCallback(
|
| 408 |
+
self.cfg.early_stopping_patience,
|
| 409 |
+
)
|
| 410 |
+
callbacks.append(early_stop_cb)
|
| 411 |
+
|
| 412 |
+
return callbacks
|
| 413 |
+
|
| 414 |
+
def _get_trainer_cls(self):
|
| 415 |
+
if self.cfg.lr_scheduler == "one_cycle" and (
|
| 416 |
+
self.cfg.fsdp or self.cfg.adapter == "qlora"
|
| 417 |
+
):
|
| 418 |
+
return OneCycleLRSchedulerTrainer
|
| 419 |
+
if self.cfg.relora_steps:
|
| 420 |
+
return ReLoRATrainer
|
| 421 |
+
return AxolotlTrainer
|
| 422 |
+
|
| 423 |
+
def build(self, total_num_steps):
|
| 424 |
+
warmup_steps = (
|
| 425 |
+
self.cfg.warmup_steps
|
| 426 |
+
if self.cfg.warmup_steps is not None
|
| 427 |
+
else min(int(0.03 * total_num_steps), 100)
|
| 428 |
+
)
|
| 429 |
+
logging_steps = (
|
| 430 |
+
self.cfg.logging_steps
|
| 431 |
+
if self.cfg.logging_steps is not None
|
| 432 |
+
else max(min(int(0.005 * total_num_steps), 10), 1)
|
| 433 |
+
)
|
| 434 |
+
|
| 435 |
+
training_arguments_kwargs = {}
|
| 436 |
+
if self.cfg.bf16 == "full":
|
| 437 |
+
training_arguments_kwargs["bf16_full_eval"] = True
|
| 438 |
+
else:
|
| 439 |
+
training_arguments_kwargs["bf16"] = self.cfg.bf16
|
| 440 |
+
training_arguments_kwargs["fp16"] = (
|
| 441 |
+
self.cfg.fp16 and not self.cfg.bf16
|
| 442 |
+
) or False
|
| 443 |
+
training_arguments_kwargs["tf32"] = self.cfg.tf32
|
| 444 |
+
training_arguments_kwargs["warmup_steps"] = warmup_steps
|
| 445 |
+
training_arguments_kwargs["logging_steps"] = logging_steps
|
| 446 |
+
|
| 447 |
+
if self.cfg.seed:
|
| 448 |
+
training_arguments_kwargs["seed"] = self.cfg.seed
|
| 449 |
+
|
| 450 |
+
if self.cfg.gradient_checkpointing:
|
| 451 |
+
training_arguments_kwargs[
|
| 452 |
+
"gradient_checkpointing"
|
| 453 |
+
] = self.cfg.gradient_checkpointing
|
| 454 |
+
if self.cfg.fsdp:
|
| 455 |
+
training_arguments_kwargs["fsdp"] = self.cfg.fsdp
|
| 456 |
+
if self.cfg.fsdp_config:
|
| 457 |
+
training_arguments_kwargs["fsdp_config"] = dict(self.cfg.fsdp_config)
|
| 458 |
+
|
| 459 |
+
# deepspeed
|
| 460 |
+
if self.cfg.deepspeed:
|
| 461 |
+
training_arguments_kwargs["deepspeed"] = self.cfg.deepspeed
|
| 462 |
+
|
| 463 |
+
if self.cfg.lr_quadratic_warmup is not None:
|
| 464 |
+
training_arguments_kwargs[
|
| 465 |
+
"lr_quadratic_warmup"
|
| 466 |
+
] = self.cfg.lr_quadratic_warmup
|
| 467 |
+
|
| 468 |
+
if self.cfg.adam_beta1:
|
| 469 |
+
training_arguments_kwargs["adam_beta1"] = self.cfg.adam_beta1
|
| 470 |
+
if self.cfg.adam_beta2:
|
| 471 |
+
training_arguments_kwargs["adam_beta2"] = self.cfg.adam_beta2
|
| 472 |
+
if self.cfg.adam_epsilon:
|
| 473 |
+
training_arguments_kwargs["adam_epsilon"] = self.cfg.adam_epsilon
|
| 474 |
+
if self.cfg.max_grad_norm:
|
| 475 |
+
training_arguments_kwargs["max_grad_norm"] = self.cfg.max_grad_norm
|
| 476 |
+
|
| 477 |
+
if self.cfg.hub_model_id:
|
| 478 |
+
training_arguments_kwargs["hub_model_id"] = self.cfg.hub_model_id
|
| 479 |
+
training_arguments_kwargs["push_to_hub"] = True
|
| 480 |
+
training_arguments_kwargs["hub_private_repo"] = True
|
| 481 |
+
|
| 482 |
+
if self.cfg.hub_strategy:
|
| 483 |
+
training_arguments_kwargs["hub_strategy"] = self.cfg.hub_strategy
|
| 484 |
+
|
| 485 |
+
if self.cfg.save_safetensors:
|
| 486 |
+
training_arguments_kwargs["save_safetensors"] = self.cfg.save_safetensors
|
| 487 |
+
|
| 488 |
+
if self.cfg.sample_packing_eff_est:
|
| 489 |
+
training_arguments_kwargs[
|
| 490 |
+
"sample_packing_efficiency"
|
| 491 |
+
] = self.cfg.sample_packing_eff_est
|
| 492 |
+
|
| 493 |
+
if self.cfg.eval_steps:
|
| 494 |
+
training_arguments_kwargs["evaluation_strategy"] = "steps"
|
| 495 |
+
training_arguments_kwargs["eval_steps"] = self.cfg.eval_steps
|
| 496 |
+
elif self.cfg.evaluation_strategy:
|
| 497 |
+
training_arguments_kwargs[
|
| 498 |
+
"evaluation_strategy"
|
| 499 |
+
] = self.cfg.evaluation_strategy
|
| 500 |
+
elif self.cfg.val_set_size == 0:
|
| 501 |
+
# no eval set, so don't eval
|
| 502 |
+
training_arguments_kwargs["evaluation_strategy"] = "no"
|
| 503 |
+
else:
|
| 504 |
+
# we have an eval set, but no steps defined, default to use epoch
|
| 505 |
+
training_arguments_kwargs["evaluation_strategy"] = "epoch"
|
| 506 |
+
|
| 507 |
+
if self.cfg.save_steps:
|
| 508 |
+
training_arguments_kwargs["save_strategy"] = "steps"
|
| 509 |
+
training_arguments_kwargs["save_steps"] = self.cfg.save_steps
|
| 510 |
+
elif self.cfg.save_strategy:
|
| 511 |
+
training_arguments_kwargs["save_strategy"] = self.cfg.save_strategy
|
| 512 |
+
else:
|
| 513 |
+
# default to saving each epoch if not defined
|
| 514 |
+
training_arguments_kwargs["save_strategy"] = "epoch"
|
| 515 |
+
|
| 516 |
+
if self.cfg.do_bench_eval:
|
| 517 |
+
training_arguments_kwargs["do_bench_eval"] = self.cfg.do_bench_eval
|
| 518 |
+
if self.cfg.bench_dataset:
|
| 519 |
+
training_arguments_kwargs["bench_dataset"] = self.cfg.bench_dataset
|
| 520 |
+
if self.cfg.metric_for_best_model:
|
| 521 |
+
training_arguments_kwargs[
|
| 522 |
+
"metric_for_best_model"
|
| 523 |
+
] = self.cfg.metric_for_best_model
|
| 524 |
+
if self.cfg.greater_is_better:
|
| 525 |
+
training_arguments_kwargs["greater_is_better"] = self.cfg.greater_is_better
|
| 526 |
+
|
| 527 |
+
if self.cfg.torch_compile:
|
| 528 |
+
if torch.__version__ < "2.1.0": # pylint: disable=protected-access
|
| 529 |
+
LOG.warning("torch>=2.1.0 required for torch_compile to work properly")
|
| 530 |
+
elif torch._dynamo: # pylint: disable=protected-access
|
| 531 |
+
torch._dynamo.config.suppress_errors = ( # pylint: disable=protected-access
|
| 532 |
+
True
|
| 533 |
+
)
|
| 534 |
+
training_arguments_kwargs["torch_compile"] = self.cfg.torch_compile
|
| 535 |
+
if self.cfg.torch_compile_backend:
|
| 536 |
+
training_arguments_kwargs[
|
| 537 |
+
"torch_compile_backend"
|
| 538 |
+
] = self.cfg.torch_compile_backend
|
| 539 |
+
|
| 540 |
+
# DDP Config
|
| 541 |
+
if self.cfg.ddp_timeout:
|
| 542 |
+
training_arguments_kwargs["ddp_timeout"] = self.cfg.ddp_timeout
|
| 543 |
+
# see https://pytorch.org/docs/stable/generated/torch.nn.parallel.DistributedDataParallel.html
|
| 544 |
+
if self.cfg.ddp_bucket_cap_mb:
|
| 545 |
+
training_arguments_kwargs["ddp_bucket_cap_mb"] = self.cfg.ddp_bucket_cap_mb
|
| 546 |
+
if self.cfg.ddp_broadcast_buffers is not None:
|
| 547 |
+
training_arguments_kwargs[
|
| 548 |
+
"ddp_broadcast_buffers"
|
| 549 |
+
] = self.cfg.ddp_broadcast_buffers
|
| 550 |
+
|
| 551 |
+
# these are all the "standard" kwargs that are def used
|
| 552 |
+
training_arguments_kwargs["max_steps"] = (
|
| 553 |
+
total_num_steps if self.cfg.max_steps else -1
|
| 554 |
+
)
|
| 555 |
+
training_arguments_kwargs["max_seq_length"] = self.cfg.sequence_len
|
| 556 |
+
training_arguments_kwargs[
|
| 557 |
+
"per_device_train_batch_size"
|
| 558 |
+
] = self.cfg.micro_batch_size
|
| 559 |
+
training_arguments_kwargs[
|
| 560 |
+
"per_device_eval_batch_size"
|
| 561 |
+
] = self.cfg.eval_batch_size
|
| 562 |
+
training_arguments_kwargs[
|
| 563 |
+
"gradient_accumulation_steps"
|
| 564 |
+
] = self.cfg.gradient_accumulation_steps
|
| 565 |
+
training_arguments_kwargs[
|
| 566 |
+
"eval_accumulation_steps"
|
| 567 |
+
] = self.cfg.gradient_accumulation_steps
|
| 568 |
+
training_arguments_kwargs["num_train_epochs"] = self.cfg.num_epochs
|
| 569 |
+
training_arguments_kwargs["learning_rate"] = self.cfg.learning_rate
|
| 570 |
+
training_arguments_kwargs["output_dir"] = self.cfg.output_dir
|
| 571 |
+
training_arguments_kwargs["save_total_limit"] = (
|
| 572 |
+
self.cfg.save_total_limit if self.cfg.save_total_limit else 4
|
| 573 |
+
)
|
| 574 |
+
training_arguments_kwargs["load_best_model_at_end"] = (
|
| 575 |
+
(
|
| 576 |
+
self.cfg.load_best_model_at_end is not False
|
| 577 |
+
or self.cfg.early_stopping_patience
|
| 578 |
+
)
|
| 579 |
+
and self.cfg.val_set_size > 0
|
| 580 |
+
and self.cfg.save_steps
|
| 581 |
+
and self.cfg.eval_steps
|
| 582 |
+
and self.cfg.save_steps % self.cfg.eval_steps == 0
|
| 583 |
+
) or False
|
| 584 |
+
training_arguments_kwargs["ddp_find_unused_parameters"] = (
|
| 585 |
+
False if self.cfg.ddp else None
|
| 586 |
+
)
|
| 587 |
+
training_arguments_kwargs["group_by_length"] = self.cfg.group_by_length
|
| 588 |
+
training_arguments_kwargs["report_to"] = "wandb" if self.cfg.use_wandb else None
|
| 589 |
+
training_arguments_kwargs["run_name"] = (
|
| 590 |
+
self.cfg.wandb_run_id if self.cfg.use_wandb else None
|
| 591 |
+
)
|
| 592 |
+
training_arguments_kwargs["optim"] = (
|
| 593 |
+
self.cfg.optimizer if self.cfg.optimizer else "adamw_hf"
|
| 594 |
+
)
|
| 595 |
+
training_arguments_kwargs["lr_scheduler_type"] = (
|
| 596 |
+
self.cfg.lr_scheduler
|
| 597 |
+
if self.cfg.lr_scheduler
|
| 598 |
+
and self.cfg.lr_scheduler not in ("one_cycle", "log_sweep")
|
| 599 |
+
else "cosine"
|
| 600 |
+
)
|
| 601 |
+
training_arguments_kwargs["weight_decay"] = (
|
| 602 |
+
self.cfg.weight_decay if self.cfg.weight_decay is not None else 0.0
|
| 603 |
+
)
|
| 604 |
+
training_arguments_kwargs["sample_packing"] = (
|
| 605 |
+
self.cfg.sample_packing if self.cfg.sample_packing else False
|
| 606 |
+
)
|
| 607 |
+
training_arguments_kwargs["eval_sample_packing"] = (
|
| 608 |
+
self.cfg.sample_packing if self.cfg.sample_packing else False
|
| 609 |
+
)
|
| 610 |
+
training_arguments_kwargs[
|
| 611 |
+
"sample_packing_seq_len_multiplier"
|
| 612 |
+
] = self.cfg.micro_batch_size
|
| 613 |
+
training_arguments_kwargs["relora_steps"] = self.cfg.relora_steps
|
| 614 |
+
training_arguments_kwargs["relora_warmup_steps"] = self.cfg.relora_warmup_steps
|
| 615 |
+
training_arguments_kwargs = self.hook_pre_create_training_args(
|
| 616 |
+
training_arguments_kwargs
|
| 617 |
+
)
|
| 618 |
+
training_args = (
|
| 619 |
+
AxolotlTrainingArguments( # pylint: disable=unexpected-keyword-arg
|
| 620 |
+
**training_arguments_kwargs,
|
| 621 |
+
)
|
| 622 |
+
)
|
| 623 |
+
training_args = self.hook_post_create_training_args(training_args)
|
| 624 |
+
trainer_kwargs = {}
|
| 625 |
+
|
| 626 |
+
if self.cfg.optimizer == "adamw_anyprecision":
|
| 627 |
+
if Path(self.cfg.torchdistx_path).exists():
|
| 628 |
+
sys.path.append(self.cfg.torchdistx_path)
|
| 629 |
+
importlib.import_module("torchdistx")
|
| 630 |
+
|
| 631 |
+
data_collator_kwargs = {
|
| 632 |
+
"padding": True, # True/"longest" is the default
|
| 633 |
+
}
|
| 634 |
+
if self.cfg.pad_to_sequence_len:
|
| 635 |
+
data_collator_kwargs["pad_to_multiple_of"] = 64 * math.ceil(
|
| 636 |
+
self.cfg.sequence_len / 64
|
| 637 |
+
)
|
| 638 |
+
else:
|
| 639 |
+
# A100 is best at 64, while others at 8. Let's use the larger so we don't have to check
|
| 640 |
+
# https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html
|
| 641 |
+
data_collator_kwargs["pad_to_multiple_of"] = 64
|
| 642 |
+
|
| 643 |
+
if self.cfg.is_llama_derived_model and self.cfg.landmark_attention:
|
| 644 |
+
from axolotl.monkeypatch.llama_landmark_attn import (
|
| 645 |
+
add_mem_tokens,
|
| 646 |
+
get_mem_id,
|
| 647 |
+
set_model_mem_id,
|
| 648 |
+
)
|
| 649 |
+
|
| 650 |
+
set_model_mem_id(self.model, self.tokenizer)
|
| 651 |
+
|
| 652 |
+
LOG.info("Adding landmark attention tokens to dataset")
|
| 653 |
+
|
| 654 |
+
for dataset in [self.train_dataset, self.eval_dataset]:
|
| 655 |
+
dataset = dataset.map(
|
| 656 |
+
partial(
|
| 657 |
+
add_mem_tokens, mem_freq=50, mem_id=get_mem_id(self.tokenizer)
|
| 658 |
+
),
|
| 659 |
+
batched=False,
|
| 660 |
+
num_proc=32,
|
| 661 |
+
)
|
| 662 |
+
|
| 663 |
+
trainer_cls = self._get_trainer_cls()
|
| 664 |
+
trainer_kwargs, trainer_cls = self.hook_pre_create_trainer(
|
| 665 |
+
trainer_kwargs, trainer_cls
|
| 666 |
+
)
|
| 667 |
+
trainer = trainer_cls(
|
| 668 |
+
model=self.model,
|
| 669 |
+
train_dataset=self.train_dataset,
|
| 670 |
+
eval_dataset=self.eval_dataset,
|
| 671 |
+
args=training_args,
|
| 672 |
+
data_collator=DataCollatorForSeq2Seq(
|
| 673 |
+
self.tokenizer,
|
| 674 |
+
return_tensors="pt",
|
| 675 |
+
**data_collator_kwargs,
|
| 676 |
+
),
|
| 677 |
+
bench_data_collator=transformers.DataCollatorForSeq2Seq(
|
| 678 |
+
self.tokenizer,
|
| 679 |
+
return_tensors="pt",
|
| 680 |
+
**data_collator_kwargs,
|
| 681 |
+
),
|
| 682 |
+
callbacks=self.get_callbacks(),
|
| 683 |
+
**trainer_kwargs,
|
| 684 |
+
)
|
| 685 |
+
trainer = self.hook_post_create_trainer(trainer)
|
| 686 |
+
for callback in self.get_post_trainer_create_callbacks(trainer):
|
| 687 |
+
trainer.add_callback(callback)
|
| 688 |
+
|
| 689 |
+
return trainer
|
src/axolotl/utils/callbacks.py
CHANGED
|
@@ -37,7 +37,7 @@ from axolotl.utils.distributed import (
|
|
| 37 |
)
|
| 38 |
|
| 39 |
if TYPE_CHECKING:
|
| 40 |
-
from axolotl.
|
| 41 |
|
| 42 |
LOG = logging.getLogger("axolotl.callbacks")
|
| 43 |
IGNORE_INDEX = -100
|
|
|
|
| 37 |
)
|
| 38 |
|
| 39 |
if TYPE_CHECKING:
|
| 40 |
+
from axolotl.core.trainer_builder import AxolotlTrainingArguments
|
| 41 |
|
| 42 |
LOG = logging.getLogger("axolotl.callbacks")
|
| 43 |
IGNORE_INDEX = -100
|
src/axolotl/utils/trainer.py
CHANGED
|
@@ -1,40 +1,19 @@
|
|
| 1 |
"""Module containing the Trainer class and related functions"""
|
| 2 |
-
import importlib
|
| 3 |
import logging
|
| 4 |
import math
|
| 5 |
import os
|
| 6 |
-
import sys
|
| 7 |
from contextlib import contextmanager
|
| 8 |
-
from dataclasses import dataclass, field
|
| 9 |
from functools import partial
|
| 10 |
-
from
|
| 11 |
-
from typing import List, Optional, Union
|
| 12 |
|
| 13 |
import numpy as np
|
| 14 |
import torch
|
| 15 |
import torch.cuda
|
| 16 |
import torch.distributed as dist
|
| 17 |
-
import
|
| 18 |
-
from
|
| 19 |
-
|
| 20 |
-
from
|
| 21 |
-
DataLoader,
|
| 22 |
-
DistributedSampler,
|
| 23 |
-
RandomSampler,
|
| 24 |
-
SequentialSampler,
|
| 25 |
-
)
|
| 26 |
-
from transformers import EarlyStoppingCallback, Trainer, TrainingArguments
|
| 27 |
-
from transformers.trainer_pt_utils import SequentialDistributedSampler
|
| 28 |
-
|
| 29 |
-
from axolotl.monkeypatch.relora import ReLoRACallback, ReLoRAScheduler
|
| 30 |
-
from axolotl.utils.callbacks import (
|
| 31 |
-
EvalFirstStepCallback,
|
| 32 |
-
GPUStatsCallback,
|
| 33 |
-
SaveAxolotlConfigtoWandBCallback,
|
| 34 |
-
SaveBetterTransformerModelCallback,
|
| 35 |
-
bench_eval_callback_factory,
|
| 36 |
-
log_prediction_callback_factory,
|
| 37 |
-
)
|
| 38 |
from axolotl.utils.collators import DataCollatorForSeq2Seq
|
| 39 |
from axolotl.utils.dataloader import MultipackDistributedDataloader
|
| 40 |
from axolotl.utils.distributed import (
|
|
@@ -43,7 +22,6 @@ from axolotl.utils.distributed import (
|
|
| 43 |
reduce_and_broadcast,
|
| 44 |
zero_first,
|
| 45 |
)
|
| 46 |
-
from axolotl.utils.schedulers import get_cosine_schedule_with_quadratic_warmup
|
| 47 |
|
| 48 |
LOG = logging.getLogger("axolotl")
|
| 49 |
|
|
@@ -110,269 +88,6 @@ def trainer_weighted_loss(model_output, labels, shift_labels=True):
|
|
| 110 |
return weighted_cross_entropy(logits, labels, weights)
|
| 111 |
|
| 112 |
|
| 113 |
-
@dataclass
|
| 114 |
-
class AxolotlTrainingArguments(TrainingArguments):
|
| 115 |
-
"""
|
| 116 |
-
Extend the base TrainingArguments for axolotl helpers
|
| 117 |
-
"""
|
| 118 |
-
|
| 119 |
-
lr_quadratic_warmup: bool = field(
|
| 120 |
-
default=False,
|
| 121 |
-
metadata={"help": "Use quadratic warmup for cosine scheduling."},
|
| 122 |
-
)
|
| 123 |
-
sample_packing: bool = field(
|
| 124 |
-
default=False,
|
| 125 |
-
metadata={"help": "Use sample packing for efficient training."},
|
| 126 |
-
)
|
| 127 |
-
eval_sample_packing: Optional[bool] = field(
|
| 128 |
-
default=None,
|
| 129 |
-
metadata={"help": "Use sample packing for efficient evals."},
|
| 130 |
-
)
|
| 131 |
-
sample_packing_efficiency: float = field(
|
| 132 |
-
default=1.0,
|
| 133 |
-
metadata={"help": "Sample packing efficiency for calculating batch length."},
|
| 134 |
-
)
|
| 135 |
-
max_seq_length: int = field(
|
| 136 |
-
default=2048,
|
| 137 |
-
metadata={"help": "The maximum sequence length the model can handle"},
|
| 138 |
-
)
|
| 139 |
-
sample_packing_seq_len_multiplier: int = field(
|
| 140 |
-
default=1,
|
| 141 |
-
metadata={"help": "the multiplier for the max len for packed sequences"},
|
| 142 |
-
)
|
| 143 |
-
relora_steps: Optional[int] = field(
|
| 144 |
-
default=None,
|
| 145 |
-
metadata={"help": "how often to reset for ReLoRA"},
|
| 146 |
-
)
|
| 147 |
-
relora_warmup_steps: Optional[int] = field(
|
| 148 |
-
default=None,
|
| 149 |
-
metadata={"help": "how many warmup steps to take after reset for ReLoRA"},
|
| 150 |
-
)
|
| 151 |
-
bench_split: Optional[str] = field(
|
| 152 |
-
default="eval", metadata={"help": "The benchmark split to run on"}
|
| 153 |
-
)
|
| 154 |
-
bench_dataset: Optional[str] = field(
|
| 155 |
-
default="pharaouk/dharma-1/dharma_1_mini.json",
|
| 156 |
-
metadata={
|
| 157 |
-
"help": "Benchmark dataset to use: options are `mmlu-zs`, `mmlu-fs`, or the full path to the dataset file"
|
| 158 |
-
},
|
| 159 |
-
)
|
| 160 |
-
do_bench_eval: Optional[bool] = field(
|
| 161 |
-
default=False, metadata={"help": "Whether to run the Benchmark evaluation."}
|
| 162 |
-
)
|
| 163 |
-
max_bench_samples: Optional[int] = field(
|
| 164 |
-
default=None,
|
| 165 |
-
metadata={
|
| 166 |
-
"help": "If set, only evaluates on `max_bench_samples` of the benchmark dataset."
|
| 167 |
-
},
|
| 168 |
-
)
|
| 169 |
-
bench_source_max_len: int = field(
|
| 170 |
-
default=2048, metadata={"help": "Maximum source sequence length for bench."}
|
| 171 |
-
)
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
class AxolotlTrainer(Trainer):
|
| 175 |
-
"""
|
| 176 |
-
Extend the base Trainer for axolotl helpers
|
| 177 |
-
"""
|
| 178 |
-
|
| 179 |
-
args = None # type: AxolotlTrainingArguments
|
| 180 |
-
|
| 181 |
-
def __init__(self, *args, bench_data_collator=None, **kwargs):
|
| 182 |
-
self.bench_data_collator = bench_data_collator
|
| 183 |
-
super().__init__(*args, **kwargs)
|
| 184 |
-
|
| 185 |
-
def create_scheduler(
|
| 186 |
-
self, num_training_steps: int, optimizer: torch.optim.Optimizer = None
|
| 187 |
-
):
|
| 188 |
-
"""
|
| 189 |
-
Setup the scheduler. The optimizer of the trainer must have been set up either before this method is called or
|
| 190 |
-
passed as an argument.
|
| 191 |
-
|
| 192 |
-
Args:
|
| 193 |
-
num_training_steps (int): The number of training steps to do.
|
| 194 |
-
optimizer (torch.optim.Optimizer): The training optimizer
|
| 195 |
-
"""
|
| 196 |
-
|
| 197 |
-
# fmt: off
|
| 198 |
-
if self.lr_scheduler is None: # type: ignore # pylint: disable=access-member-before-definition
|
| 199 |
-
# fmt: on
|
| 200 |
-
if (
|
| 201 |
-
self.args.lr_scheduler_type == "cosine"
|
| 202 |
-
and self.args.lr_quadratic_warmup is True
|
| 203 |
-
):
|
| 204 |
-
self.lr_scheduler = get_cosine_schedule_with_quadratic_warmup( # pylint: disable=attribute-defined-outside-init
|
| 205 |
-
optimizer,
|
| 206 |
-
num_warmup_steps=self.args.get_warmup_steps(num_training_steps),
|
| 207 |
-
num_training_steps=num_training_steps,
|
| 208 |
-
)
|
| 209 |
-
else:
|
| 210 |
-
return super().create_scheduler(num_training_steps, optimizer)
|
| 211 |
-
return self.lr_scheduler
|
| 212 |
-
|
| 213 |
-
def _get_train_sampler(self) -> Optional[torch.utils.data.Sampler]:
|
| 214 |
-
if self.args.world_size > 1 and self.args.sample_packing:
|
| 215 |
-
return DistributedSampler(
|
| 216 |
-
self.train_dataset,
|
| 217 |
-
num_replicas=self.args.world_size,
|
| 218 |
-
rank=self.args.process_index,
|
| 219 |
-
seed=self.args.seed,
|
| 220 |
-
)
|
| 221 |
-
return super()._get_train_sampler()
|
| 222 |
-
|
| 223 |
-
def _get_eval_sampler(
|
| 224 |
-
self, eval_dataset: Dataset
|
| 225 |
-
) -> Optional[torch.utils.data.Sampler]:
|
| 226 |
-
if (
|
| 227 |
-
self.args.world_size > 1
|
| 228 |
-
and self.args.sample_packing
|
| 229 |
-
and self.args.eval_sample_packing is not False
|
| 230 |
-
):
|
| 231 |
-
return SequentialDistributedSampler(
|
| 232 |
-
eval_dataset,
|
| 233 |
-
num_replicas=self.args.world_size,
|
| 234 |
-
rank=self.args.process_index,
|
| 235 |
-
batch_size=self.args.per_device_eval_batch_size,
|
| 236 |
-
)
|
| 237 |
-
return super()._get_eval_sampler(eval_dataset)
|
| 238 |
-
|
| 239 |
-
def get_train_dataloader(self) -> Union[DataLoader, MultipackDistributedDataloader]:
|
| 240 |
-
if self.args.sample_packing:
|
| 241 |
-
train_sampler = self._get_train_sampler()
|
| 242 |
-
return self.accelerator.prepare(
|
| 243 |
-
MultipackDistributedDataloader(
|
| 244 |
-
self.train_dataset,
|
| 245 |
-
batch_size=self._train_batch_size,
|
| 246 |
-
seq_max_length=self.args.max_seq_length,
|
| 247 |
-
collate_fn=self.data_collator,
|
| 248 |
-
sampler=train_sampler,
|
| 249 |
-
packing_efficiency_estimate=self.args.sample_packing_efficiency,
|
| 250 |
-
sample_packing_seq_len_multiplier=self.args.sample_packing_seq_len_multiplier,
|
| 251 |
-
device_count=int(os.environ.get("WORLD_SIZE", 1)),
|
| 252 |
-
)
|
| 253 |
-
)
|
| 254 |
-
return super().get_train_dataloader()
|
| 255 |
-
|
| 256 |
-
def get_eval_dataloader(
|
| 257 |
-
self, eval_dataset: Optional[Dataset] = None
|
| 258 |
-
) -> Union[DataLoader, MultipackDistributedDataloader]:
|
| 259 |
-
if self.args.sample_packing and self.args.eval_sample_packing is not False:
|
| 260 |
-
eval_dataset = (
|
| 261 |
-
eval_dataset if eval_dataset is not None else self.eval_dataset
|
| 262 |
-
)
|
| 263 |
-
|
| 264 |
-
eval_sampler = self._get_eval_sampler(eval_dataset)
|
| 265 |
-
return self.accelerator.prepare(
|
| 266 |
-
MultipackDistributedDataloader(
|
| 267 |
-
eval_dataset,
|
| 268 |
-
batch_size=self.args.eval_batch_size,
|
| 269 |
-
seq_max_length=self.args.max_seq_length,
|
| 270 |
-
collate_fn=self.data_collator,
|
| 271 |
-
sampler=eval_sampler,
|
| 272 |
-
packing_efficiency_estimate=self.args.sample_packing_efficiency,
|
| 273 |
-
sample_packing_seq_len_multiplier=self.args.eval_batch_size,
|
| 274 |
-
device_count=int(os.environ.get("WORLD_SIZE", 1)),
|
| 275 |
-
)
|
| 276 |
-
)
|
| 277 |
-
return super().get_eval_dataloader(eval_dataset)
|
| 278 |
-
|
| 279 |
-
def _get_bench_sampler(
|
| 280 |
-
self, bench_dataset: Dataset
|
| 281 |
-
) -> Optional[torch.utils.data.Sampler]:
|
| 282 |
-
if self.args.world_size <= 1:
|
| 283 |
-
return SequentialSampler(bench_dataset)
|
| 284 |
-
return None
|
| 285 |
-
|
| 286 |
-
def get_bench_dataloader(
|
| 287 |
-
self,
|
| 288 |
-
bench_dataset: Dataset,
|
| 289 |
-
) -> Union[DataLoader, MultipackDistributedDataloader]:
|
| 290 |
-
dataloader_params = {
|
| 291 |
-
"batch_size": self.args.eval_batch_size,
|
| 292 |
-
"collate_fn": self.bench_data_collator,
|
| 293 |
-
"num_workers": self.args.dataloader_num_workers,
|
| 294 |
-
"pin_memory": self.args.dataloader_pin_memory,
|
| 295 |
-
}
|
| 296 |
-
|
| 297 |
-
if not isinstance(bench_dataset, torch.utils.data.IterableDataset):
|
| 298 |
-
dataloader_params["sampler"] = self._get_bench_sampler(bench_dataset)
|
| 299 |
-
dataloader_params["drop_last"] = self.args.dataloader_drop_last
|
| 300 |
-
|
| 301 |
-
return DataLoader(bench_dataset, **dataloader_params)
|
| 302 |
-
# return self.accelerator.prepare(DataLoader(bench_dataset, **dataloader_params))
|
| 303 |
-
|
| 304 |
-
def compute_loss(self, model, inputs, return_outputs=False):
|
| 305 |
-
# use one's weighted cross entropy loss calc
|
| 306 |
-
# if self.args.sample_packing:
|
| 307 |
-
# labels = inputs.pop("labels")
|
| 308 |
-
# outputs = model(**inputs)
|
| 309 |
-
# loss = trainer_weighted_loss(outputs, labels, shift_labels=True)
|
| 310 |
-
# return (loss, outputs) if return_outputs else loss
|
| 311 |
-
return super().compute_loss(model, inputs, return_outputs=return_outputs)
|
| 312 |
-
|
| 313 |
-
|
| 314 |
-
class OneCycleLRSchedulerTrainer(AxolotlTrainer):
|
| 315 |
-
"""
|
| 316 |
-
Trainer subclass that uses the OneCycleLR scheduler
|
| 317 |
-
"""
|
| 318 |
-
|
| 319 |
-
def __init__(self, *args, **kwargs):
|
| 320 |
-
super().__init__(*args, **kwargs)
|
| 321 |
-
self.lr_scheduler = None
|
| 322 |
-
|
| 323 |
-
def create_scheduler(
|
| 324 |
-
self,
|
| 325 |
-
num_training_steps: int,
|
| 326 |
-
optimizer: Optional[torch.optim.Optimizer] = None,
|
| 327 |
-
):
|
| 328 |
-
optimizer = self.optimizer if optimizer is None else optimizer
|
| 329 |
-
num_warmup_steps = self.args.get_warmup_steps(num_training_steps)
|
| 330 |
-
pct_start = num_warmup_steps / num_training_steps
|
| 331 |
-
|
| 332 |
-
self.lr_scheduler = OneCycleLR(
|
| 333 |
-
optimizer,
|
| 334 |
-
max_lr=self.args.learning_rate,
|
| 335 |
-
total_steps=num_training_steps,
|
| 336 |
-
pct_start=pct_start,
|
| 337 |
-
div_factor=6,
|
| 338 |
-
)
|
| 339 |
-
|
| 340 |
-
return self.lr_scheduler
|
| 341 |
-
|
| 342 |
-
|
| 343 |
-
class ReLoRATrainer(AxolotlTrainer):
|
| 344 |
-
"""
|
| 345 |
-
Trainer subclass that uses the OneCycleLR scheduler
|
| 346 |
-
"""
|
| 347 |
-
|
| 348 |
-
def __init__(self, *args, **kwargs):
|
| 349 |
-
super().__init__(*args, **kwargs)
|
| 350 |
-
self.lr_scheduler = None
|
| 351 |
-
|
| 352 |
-
def create_scheduler(
|
| 353 |
-
self,
|
| 354 |
-
num_training_steps: int,
|
| 355 |
-
optimizer: Optional[torch.optim.Optimizer] = None,
|
| 356 |
-
):
|
| 357 |
-
optimizer = self.optimizer if optimizer is None else optimizer
|
| 358 |
-
lr_scheduler = super().create_scheduler(num_training_steps, optimizer)
|
| 359 |
-
|
| 360 |
-
if self.args.relora_steps:
|
| 361 |
-
warmup_steps = (
|
| 362 |
-
self.args.relora_warmup_steps if self.args.relora_warmup_steps else 10
|
| 363 |
-
)
|
| 364 |
-
self.lr_scheduler = ReLoRAScheduler(
|
| 365 |
-
optimizer,
|
| 366 |
-
lr_scheduler,
|
| 367 |
-
self.args.relora_steps,
|
| 368 |
-
warmup_steps,
|
| 369 |
-
)
|
| 370 |
-
else:
|
| 371 |
-
self.lr_scheduler = lr_scheduler
|
| 372 |
-
|
| 373 |
-
return self.lr_scheduler
|
| 374 |
-
|
| 375 |
-
|
| 376 |
def add_position_ids(sample):
|
| 377 |
sample_len = len(sample["input_ids"])
|
| 378 |
sample["position_ids"] = torch.arange(len(sample["input_ids"]))
|
|
@@ -550,245 +265,8 @@ def setup_trainer(cfg, train_dataset, eval_dataset, model, tokenizer, total_num_
|
|
| 550 |
elif cfg.deepspeed:
|
| 551 |
os.environ["ACCELERATE_USE_DEEPSPEED"] = "true"
|
| 552 |
|
| 553 |
-
|
| 554 |
-
|
| 555 |
-
|
| 556 |
-
else min(int(0.03 * total_num_steps), 100)
|
| 557 |
-
)
|
| 558 |
-
logging_steps = (
|
| 559 |
-
cfg.logging_steps
|
| 560 |
-
if cfg.logging_steps is not None
|
| 561 |
-
else max(min(int(0.005 * total_num_steps), 10), 1)
|
| 562 |
-
)
|
| 563 |
-
|
| 564 |
-
training_arguments_kwargs = {}
|
| 565 |
-
if cfg.bf16 == "full":
|
| 566 |
-
training_arguments_kwargs["bf16_full_eval"] = True
|
| 567 |
-
else:
|
| 568 |
-
training_arguments_kwargs["bf16"] = cfg.bf16
|
| 569 |
-
training_arguments_kwargs["fp16"] = (cfg.fp16 and not cfg.bf16) or False
|
| 570 |
-
training_arguments_kwargs["tf32"] = cfg.tf32
|
| 571 |
-
training_arguments_kwargs["warmup_steps"] = warmup_steps
|
| 572 |
-
training_arguments_kwargs["logging_steps"] = logging_steps
|
| 573 |
-
|
| 574 |
-
if cfg.seed:
|
| 575 |
-
training_arguments_kwargs["seed"] = cfg.seed
|
| 576 |
-
|
| 577 |
-
if cfg.gradient_checkpointing:
|
| 578 |
-
training_arguments_kwargs["gradient_checkpointing"] = cfg.gradient_checkpointing
|
| 579 |
-
if cfg.fsdp:
|
| 580 |
-
training_arguments_kwargs["fsdp"] = cfg.fsdp
|
| 581 |
-
if cfg.fsdp_config:
|
| 582 |
-
training_arguments_kwargs["fsdp_config"] = dict(cfg.fsdp_config)
|
| 583 |
-
|
| 584 |
-
# deepspeed
|
| 585 |
-
if cfg.deepspeed:
|
| 586 |
-
training_arguments_kwargs["deepspeed"] = cfg.deepspeed
|
| 587 |
-
|
| 588 |
-
if cfg.lr_quadratic_warmup is not None:
|
| 589 |
-
training_arguments_kwargs["lr_quadratic_warmup"] = cfg.lr_quadratic_warmup
|
| 590 |
-
|
| 591 |
-
if cfg.adam_beta1:
|
| 592 |
-
training_arguments_kwargs["adam_beta1"] = cfg.adam_beta1
|
| 593 |
-
if cfg.adam_beta2:
|
| 594 |
-
training_arguments_kwargs["adam_beta2"] = cfg.adam_beta2
|
| 595 |
-
if cfg.adam_epsilon:
|
| 596 |
-
training_arguments_kwargs["adam_epsilon"] = cfg.adam_epsilon
|
| 597 |
-
if cfg.max_grad_norm:
|
| 598 |
-
training_arguments_kwargs["max_grad_norm"] = cfg.max_grad_norm
|
| 599 |
-
|
| 600 |
-
if cfg.hub_model_id:
|
| 601 |
-
training_arguments_kwargs["hub_model_id"] = cfg.hub_model_id
|
| 602 |
-
training_arguments_kwargs["push_to_hub"] = True
|
| 603 |
-
training_arguments_kwargs["hub_private_repo"] = True
|
| 604 |
-
|
| 605 |
-
if cfg.hub_strategy:
|
| 606 |
-
training_arguments_kwargs["hub_strategy"] = cfg.hub_strategy
|
| 607 |
-
|
| 608 |
-
if cfg.save_safetensors:
|
| 609 |
-
training_arguments_kwargs["save_safetensors"] = cfg.save_safetensors
|
| 610 |
-
|
| 611 |
-
if cfg.sample_packing_eff_est:
|
| 612 |
-
training_arguments_kwargs[
|
| 613 |
-
"sample_packing_efficiency"
|
| 614 |
-
] = cfg.sample_packing_eff_est
|
| 615 |
-
|
| 616 |
-
if cfg.eval_steps:
|
| 617 |
-
training_arguments_kwargs["evaluation_strategy"] = "steps"
|
| 618 |
-
training_arguments_kwargs["eval_steps"] = cfg.eval_steps
|
| 619 |
-
elif cfg.evaluation_strategy:
|
| 620 |
-
training_arguments_kwargs["evaluation_strategy"] = cfg.evaluation_strategy
|
| 621 |
-
elif cfg.val_set_size == 0:
|
| 622 |
-
# no eval set, so don't eval
|
| 623 |
-
training_arguments_kwargs["evaluation_strategy"] = "no"
|
| 624 |
-
else:
|
| 625 |
-
# we have an eval set, but no steps defined, default to use epoch
|
| 626 |
-
training_arguments_kwargs["evaluation_strategy"] = "epoch"
|
| 627 |
-
|
| 628 |
-
if cfg.save_steps:
|
| 629 |
-
training_arguments_kwargs["save_strategy"] = "steps"
|
| 630 |
-
training_arguments_kwargs["save_steps"] = cfg.save_steps
|
| 631 |
-
elif cfg.save_strategy:
|
| 632 |
-
training_arguments_kwargs["save_strategy"] = cfg.save_strategy
|
| 633 |
-
else:
|
| 634 |
-
# default to saving each epoch if not defined
|
| 635 |
-
training_arguments_kwargs["save_strategy"] = "epoch"
|
| 636 |
-
|
| 637 |
-
if cfg.do_bench_eval:
|
| 638 |
-
training_arguments_kwargs["do_bench_eval"] = cfg.do_bench_eval
|
| 639 |
-
if cfg.bench_dataset:
|
| 640 |
-
training_arguments_kwargs["bench_dataset"] = cfg.bench_dataset
|
| 641 |
-
if cfg.metric_for_best_model:
|
| 642 |
-
training_arguments_kwargs["metric_for_best_model"] = cfg.metric_for_best_model
|
| 643 |
-
if cfg.greater_is_better:
|
| 644 |
-
training_arguments_kwargs["greater_is_better"] = cfg.greater_is_better
|
| 645 |
-
|
| 646 |
-
if cfg.torch_compile:
|
| 647 |
-
if torch.__version__ < "2.1.0": # pylint: disable=protected-access
|
| 648 |
-
LOG.warning("torch>=2.1.0 required for torch_compile to work properly")
|
| 649 |
-
else:
|
| 650 |
-
import torch._dynamo # pylint: disable=redefined-outer-name
|
| 651 |
-
|
| 652 |
-
torch._dynamo.config.suppress_errors = ( # pylint: disable=protected-access
|
| 653 |
-
True
|
| 654 |
-
)
|
| 655 |
-
training_arguments_kwargs["torch_compile"] = cfg.torch_compile
|
| 656 |
-
if cfg.torch_compile_backend:
|
| 657 |
-
training_arguments_kwargs[
|
| 658 |
-
"torch_compile_backend"
|
| 659 |
-
] = cfg.torch_compile_backend
|
| 660 |
-
|
| 661 |
-
# DDP Config
|
| 662 |
-
if cfg.ddp_timeout:
|
| 663 |
-
training_arguments_kwargs["ddp_timeout"] = cfg.ddp_timeout
|
| 664 |
-
# see https://pytorch.org/docs/stable/generated/torch.nn.parallel.DistributedDataParallel.html
|
| 665 |
-
if cfg.ddp_bucket_cap_mb:
|
| 666 |
-
training_arguments_kwargs["ddp_bucket_cap_mb"] = cfg.ddp_bucket_cap_mb
|
| 667 |
-
if cfg.ddp_broadcast_buffers is not None:
|
| 668 |
-
training_arguments_kwargs["ddp_broadcast_buffers"] = cfg.ddp_broadcast_buffers
|
| 669 |
-
|
| 670 |
-
training_args = AxolotlTrainingArguments( # pylint: disable=unexpected-keyword-arg
|
| 671 |
-
max_steps=total_num_steps if cfg.max_steps else -1,
|
| 672 |
-
max_seq_length=cfg.sequence_len,
|
| 673 |
-
per_device_train_batch_size=cfg.micro_batch_size,
|
| 674 |
-
per_device_eval_batch_size=cfg.eval_batch_size,
|
| 675 |
-
gradient_accumulation_steps=cfg.gradient_accumulation_steps,
|
| 676 |
-
eval_accumulation_steps=cfg.gradient_accumulation_steps,
|
| 677 |
-
num_train_epochs=cfg.num_epochs,
|
| 678 |
-
learning_rate=cfg.learning_rate,
|
| 679 |
-
output_dir=cfg.output_dir,
|
| 680 |
-
save_total_limit=cfg.save_total_limit if cfg.save_total_limit else 4,
|
| 681 |
-
load_best_model_at_end=(
|
| 682 |
-
(cfg.load_best_model_at_end is not False or cfg.early_stopping_patience)
|
| 683 |
-
and cfg.val_set_size > 0
|
| 684 |
-
and cfg.save_steps
|
| 685 |
-
and cfg.eval_steps
|
| 686 |
-
and cfg.save_steps % cfg.eval_steps == 0
|
| 687 |
-
)
|
| 688 |
-
or False,
|
| 689 |
-
ddp_find_unused_parameters=False if cfg.ddp else None,
|
| 690 |
-
group_by_length=cfg.group_by_length,
|
| 691 |
-
report_to="wandb" if cfg.use_wandb else None,
|
| 692 |
-
run_name=cfg.wandb_run_id if cfg.use_wandb else None,
|
| 693 |
-
optim=cfg.optimizer if cfg.optimizer else "adamw_hf",
|
| 694 |
-
lr_scheduler_type=cfg.lr_scheduler
|
| 695 |
-
if cfg.lr_scheduler and cfg.lr_scheduler not in ("one_cycle", "log_sweep")
|
| 696 |
-
else "cosine",
|
| 697 |
-
weight_decay=cfg.weight_decay if cfg.weight_decay is not None else 0.0,
|
| 698 |
-
sample_packing=cfg.sample_packing if cfg.sample_packing else False,
|
| 699 |
-
eval_sample_packing=cfg.eval_sample_packing,
|
| 700 |
-
sample_packing_seq_len_multiplier=cfg.micro_batch_size,
|
| 701 |
-
relora_steps=cfg.relora_steps,
|
| 702 |
-
relora_warmup_steps=cfg.relora_warmup_steps,
|
| 703 |
-
**training_arguments_kwargs,
|
| 704 |
-
)
|
| 705 |
-
|
| 706 |
-
trainer_kwargs = {}
|
| 707 |
-
|
| 708 |
-
if cfg.optimizer == "adamw_anyprecision":
|
| 709 |
-
if Path(cfg.torchdistx_path).exists():
|
| 710 |
-
sys.path.append(cfg.torchdistx_path)
|
| 711 |
-
importlib.import_module("torchdistx")
|
| 712 |
-
|
| 713 |
-
callbacks = []
|
| 714 |
-
callbacks.append(GPUStatsCallback(cfg))
|
| 715 |
-
callbacks.append(EvalFirstStepCallback)
|
| 716 |
-
|
| 717 |
-
if cfg.relora_steps:
|
| 718 |
-
callbacks.append(ReLoRACallback(cfg))
|
| 719 |
-
|
| 720 |
-
if hasattr(model, "use_bettertransformer") and model.use_bettertransformer is True:
|
| 721 |
-
callbacks.append(SaveBetterTransformerModelCallback)
|
| 722 |
-
|
| 723 |
-
data_collator_kwargs = {
|
| 724 |
-
"padding": True, # True/"longest" is the default
|
| 725 |
-
}
|
| 726 |
-
if cfg.pad_to_sequence_len:
|
| 727 |
-
data_collator_kwargs["pad_to_multiple_of"] = 64 * math.ceil(
|
| 728 |
-
cfg.sequence_len / 64
|
| 729 |
-
)
|
| 730 |
-
else:
|
| 731 |
-
# A100 is best at 64, while others at 8. Let's use the larger so we don't have to check
|
| 732 |
-
# https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html
|
| 733 |
-
data_collator_kwargs["pad_to_multiple_of"] = 64
|
| 734 |
-
|
| 735 |
-
if cfg.is_llama_derived_model and cfg.landmark_attention:
|
| 736 |
-
from axolotl.monkeypatch.llama_landmark_attn import (
|
| 737 |
-
add_mem_tokens,
|
| 738 |
-
get_mem_id,
|
| 739 |
-
set_model_mem_id,
|
| 740 |
-
)
|
| 741 |
-
|
| 742 |
-
set_model_mem_id(model, tokenizer)
|
| 743 |
-
|
| 744 |
-
LOG.info("Adding landmark attention tokens to dataset")
|
| 745 |
-
|
| 746 |
-
for dataset in [train_dataset, eval_dataset]:
|
| 747 |
-
dataset = dataset.map(
|
| 748 |
-
partial(add_mem_tokens, mem_freq=50, mem_id=get_mem_id(tokenizer)),
|
| 749 |
-
batched=False,
|
| 750 |
-
num_proc=32,
|
| 751 |
-
)
|
| 752 |
-
|
| 753 |
-
trainer_cls = AxolotlTrainer
|
| 754 |
-
if cfg.lr_scheduler == "one_cycle" and (cfg.fsdp or cfg.adapter == "qlora"):
|
| 755 |
-
trainer_cls = OneCycleLRSchedulerTrainer
|
| 756 |
-
elif cfg.relora_steps:
|
| 757 |
-
trainer_cls = ReLoRATrainer
|
| 758 |
-
trainer = trainer_cls(
|
| 759 |
-
model=model,
|
| 760 |
-
train_dataset=train_dataset,
|
| 761 |
-
eval_dataset=eval_dataset,
|
| 762 |
-
args=training_args,
|
| 763 |
-
data_collator=DataCollatorForSeq2Seq(
|
| 764 |
-
tokenizer,
|
| 765 |
-
return_tensors="pt",
|
| 766 |
-
**data_collator_kwargs,
|
| 767 |
-
),
|
| 768 |
-
bench_data_collator=transformers.DataCollatorForSeq2Seq(
|
| 769 |
-
tokenizer,
|
| 770 |
-
return_tensors="pt",
|
| 771 |
-
**data_collator_kwargs,
|
| 772 |
-
),
|
| 773 |
-
callbacks=callbacks,
|
| 774 |
-
**trainer_kwargs,
|
| 775 |
-
)
|
| 776 |
-
|
| 777 |
-
if cfg.use_wandb and cfg.eval_table_size > 0:
|
| 778 |
-
LogPredictionCallback = log_prediction_callback_factory(trainer, tokenizer)
|
| 779 |
-
trainer.add_callback(LogPredictionCallback(cfg))
|
| 780 |
-
|
| 781 |
-
if cfg.use_wandb:
|
| 782 |
-
trainer.add_callback(SaveAxolotlConfigtoWandBCallback(cfg.axolotl_config_path))
|
| 783 |
-
|
| 784 |
-
if cfg.do_bench_eval:
|
| 785 |
-
trainer.add_callback(bench_eval_callback_factory(trainer, tokenizer))
|
| 786 |
-
|
| 787 |
-
# TODO on_save callback to sync checkpoints to GCP/AWS in background
|
| 788 |
-
if cfg.early_stopping_patience:
|
| 789 |
-
early_stop_cb = EarlyStoppingCallback(
|
| 790 |
-
cfg.early_stopping_patience,
|
| 791 |
-
)
|
| 792 |
-
trainer.add_callback(early_stop_cb)
|
| 793 |
|
| 794 |
-
return
|
|
|
|
| 1 |
"""Module containing the Trainer class and related functions"""
|
|
|
|
| 2 |
import logging
|
| 3 |
import math
|
| 4 |
import os
|
|
|
|
| 5 |
from contextlib import contextmanager
|
|
|
|
| 6 |
from functools import partial
|
| 7 |
+
from typing import List
|
|
|
|
| 8 |
|
| 9 |
import numpy as np
|
| 10 |
import torch
|
| 11 |
import torch.cuda
|
| 12 |
import torch.distributed as dist
|
| 13 |
+
from datasets import set_caching_enabled
|
| 14 |
+
from torch.utils.data import DistributedSampler, RandomSampler
|
| 15 |
+
|
| 16 |
+
from axolotl.core.trainer_builder import HFCausalTrainerBuilder
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 17 |
from axolotl.utils.collators import DataCollatorForSeq2Seq
|
| 18 |
from axolotl.utils.dataloader import MultipackDistributedDataloader
|
| 19 |
from axolotl.utils.distributed import (
|
|
|
|
| 22 |
reduce_and_broadcast,
|
| 23 |
zero_first,
|
| 24 |
)
|
|
|
|
| 25 |
|
| 26 |
LOG = logging.getLogger("axolotl")
|
| 27 |
|
|
|
|
| 88 |
return weighted_cross_entropy(logits, labels, weights)
|
| 89 |
|
| 90 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 91 |
def add_position_ids(sample):
|
| 92 |
sample_len = len(sample["input_ids"])
|
| 93 |
sample["position_ids"] = torch.arange(len(sample["input_ids"]))
|
|
|
|
| 265 |
elif cfg.deepspeed:
|
| 266 |
os.environ["ACCELERATE_USE_DEEPSPEED"] = "true"
|
| 267 |
|
| 268 |
+
trainer_builder = HFCausalTrainerBuilder(cfg, model, tokenizer)
|
| 269 |
+
trainer_builder.train_dataset = train_dataset
|
| 270 |
+
trainer_builder.eval_dataset = eval_dataset
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 271 |
|
| 272 |
+
return trainer_builder.build(total_num_steps)
|