make phi training work with Loras (#588)
Browse files* valdiation for phi loras
* fix model config class check
* update readme for phi traiing
- examples/phi/README.md +6 -2
- examples/phi/phi-qlora.yml +75 -0
- src/axolotl/utils/config.py +16 -0
- src/axolotl/utils/models.py +17 -3
examples/phi/README.md
CHANGED
|
@@ -1,7 +1,11 @@
|
|
| 1 |
# Phi
|
| 2 |
|
| 3 |
-
Due to some nuances with the phi code, please use deepspeed when training phi.
|
| 4 |
|
| 5 |
```shell
|
| 6 |
-
accelerate launch
|
|
|
|
|
|
|
|
|
|
|
|
|
| 7 |
```
|
|
|
|
| 1 |
# Phi
|
| 2 |
|
| 3 |
+
Due to some nuances with the phi code, please use deepspeed when training phi for full finetune.
|
| 4 |
|
| 5 |
```shell
|
| 6 |
+
accelerate launch -m axolotl.cli.train examples/phi/phi-ft.yml --deepspeed deepspeed/zero1.json
|
| 7 |
+
|
| 8 |
+
# OR
|
| 9 |
+
|
| 10 |
+
python -m axolotl.cli.train examples/phi/phi-qlora.yml
|
| 11 |
```
|
examples/phi/phi-qlora.yml
ADDED
|
@@ -0,0 +1,75 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
base_model: microsoft/phi-1_5
|
| 2 |
+
base_model_config: microsoft/phi-1_5
|
| 3 |
+
model_type: AutoModelForCausalLM
|
| 4 |
+
tokenizer_type: AutoTokenizer
|
| 5 |
+
is_llama_derived_model: false
|
| 6 |
+
trust_remote_code: true
|
| 7 |
+
|
| 8 |
+
load_in_8bit: false
|
| 9 |
+
load_in_4bit: true
|
| 10 |
+
strict: false
|
| 11 |
+
|
| 12 |
+
datasets:
|
| 13 |
+
- path: garage-bAInd/Open-Platypus
|
| 14 |
+
type: alpaca
|
| 15 |
+
|
| 16 |
+
dataset_prepared_path: last_run_prepared
|
| 17 |
+
val_set_size: 0.05
|
| 18 |
+
output_dir: ./phi-sft-out
|
| 19 |
+
|
| 20 |
+
sequence_len: 1024
|
| 21 |
+
sample_packing: false # not CURRENTLY compatible with LoRAs
|
| 22 |
+
pad_to_sequence_len:
|
| 23 |
+
|
| 24 |
+
adapter: qlora
|
| 25 |
+
lora_model_dir:
|
| 26 |
+
lora_r: 64
|
| 27 |
+
lora_alpha: 32
|
| 28 |
+
lora_dropout: 0.05
|
| 29 |
+
lora_target_linear: true
|
| 30 |
+
lora_fan_in_fan_out:
|
| 31 |
+
|
| 32 |
+
wandb_project:
|
| 33 |
+
wandb_entity:
|
| 34 |
+
wandb_watch:
|
| 35 |
+
wandb_run_id:
|
| 36 |
+
wandb_log_model:
|
| 37 |
+
|
| 38 |
+
gradient_accumulation_steps: 1
|
| 39 |
+
micro_batch_size: 1
|
| 40 |
+
num_epochs: 4
|
| 41 |
+
optimizer: adamw_torch
|
| 42 |
+
adam_beta2: 0.95
|
| 43 |
+
adam_epsilon: 0.00001
|
| 44 |
+
max_grad_norm: 1.0
|
| 45 |
+
lr_scheduler: cosine
|
| 46 |
+
learning_rate: 0.000003
|
| 47 |
+
|
| 48 |
+
train_on_inputs: false
|
| 49 |
+
group_by_length: true
|
| 50 |
+
bf16: true
|
| 51 |
+
fp16: false
|
| 52 |
+
tf32: true
|
| 53 |
+
|
| 54 |
+
gradient_checkpointing:
|
| 55 |
+
early_stopping_patience:
|
| 56 |
+
resume_from_checkpoint:
|
| 57 |
+
local_rank:
|
| 58 |
+
logging_steps: 1
|
| 59 |
+
xformers_attention:
|
| 60 |
+
flash_attention:
|
| 61 |
+
|
| 62 |
+
warmup_steps: 100
|
| 63 |
+
eval_steps: 0.05
|
| 64 |
+
save_steps:
|
| 65 |
+
debug:
|
| 66 |
+
deepspeed:
|
| 67 |
+
weight_decay: 0.1
|
| 68 |
+
fsdp:
|
| 69 |
+
fsdp_config:
|
| 70 |
+
resize_token_embeddings_to_32x: true
|
| 71 |
+
special_tokens:
|
| 72 |
+
bos_token: "<|endoftext|>"
|
| 73 |
+
eos_token: "<|endoftext|>"
|
| 74 |
+
unk_token: "<|endoftext|>"
|
| 75 |
+
pad_token: "<|endoftext|>"
|
src/axolotl/utils/config.py
CHANGED
|
@@ -75,6 +75,7 @@ def normalize_config(cfg):
|
|
| 75 |
cfg.torch_dtype = torch.float32
|
| 76 |
|
| 77 |
model_config = load_model_config(cfg)
|
|
|
|
| 78 |
|
| 79 |
# figure out if the model is llama
|
| 80 |
cfg.is_llama_derived_model = (
|
|
@@ -237,6 +238,21 @@ def validate_config(cfg):
|
|
| 237 |
raise ValueError(
|
| 238 |
"`early_stopping_patience` requires that eval_steps should evenly divide save_steps."
|
| 239 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 240 |
# TODO
|
| 241 |
# MPT 7b
|
| 242 |
# https://github.com/facebookresearch/bitsandbytes/issues/25
|
|
|
|
| 75 |
cfg.torch_dtype = torch.float32
|
| 76 |
|
| 77 |
model_config = load_model_config(cfg)
|
| 78 |
+
cfg.model_config_type = model_config.model_type
|
| 79 |
|
| 80 |
# figure out if the model is llama
|
| 81 |
cfg.is_llama_derived_model = (
|
|
|
|
| 238 |
raise ValueError(
|
| 239 |
"`early_stopping_patience` requires that eval_steps should evenly divide save_steps."
|
| 240 |
)
|
| 241 |
+
|
| 242 |
+
if cfg.model_type == "MixFormerSequentialForCausalLM" and cfg.adapter is not None:
|
| 243 |
+
LOG.warning("Use AutoModelForCausalLM for phi/MixFormer models with qLoRA")
|
| 244 |
+
|
| 245 |
+
if cfg.model_config_type == "mixformer-sequential":
|
| 246 |
+
if cfg.sample_packing:
|
| 247 |
+
if cfg.adapter is not None:
|
| 248 |
+
LOG.warning(
|
| 249 |
+
"phi/MixFormer models are not currently compatible with LoRA and sample_packing"
|
| 250 |
+
)
|
| 251 |
+
if cfg.model_type == "AutoModelForCausalLM":
|
| 252 |
+
raise ValueError(
|
| 253 |
+
"`model_type: MixFormerSequentialForCausalLM` required for sample_packing"
|
| 254 |
+
)
|
| 255 |
+
|
| 256 |
# TODO
|
| 257 |
# MPT 7b
|
| 258 |
# https://github.com/facebookresearch/bitsandbytes/issues/25
|
src/axolotl/utils/models.py
CHANGED
|
@@ -1,6 +1,5 @@
|
|
| 1 |
"""Module for models and model loading"""
|
| 2 |
-
|
| 3 |
-
|
| 4 |
import logging
|
| 5 |
import math
|
| 6 |
import os
|
|
@@ -155,11 +154,26 @@ def load_model(
|
|
| 155 |
LOG.info("patching _expand_mask")
|
| 156 |
hijack_expand_mask()
|
| 157 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 158 |
model_kwargs = {}
|
| 159 |
if cfg.model_revision:
|
| 160 |
model_kwargs["revision"] = cfg.model_revision
|
| 161 |
if cfg.gptq:
|
| 162 |
-
model_config = load_model_config(cfg)
|
| 163 |
if not hasattr(model_config, "quantization_config"):
|
| 164 |
LOG.warning("model config does not contain quantization_config information")
|
| 165 |
else:
|
|
|
|
| 1 |
"""Module for models and model loading"""
|
| 2 |
+
import importlib
|
|
|
|
| 3 |
import logging
|
| 4 |
import math
|
| 5 |
import os
|
|
|
|
| 154 |
LOG.info("patching _expand_mask")
|
| 155 |
hijack_expand_mask()
|
| 156 |
|
| 157 |
+
model_config = load_model_config(cfg)
|
| 158 |
+
|
| 159 |
+
# special handling b/c remote MixFormers code doesn't have _no_split_modules set
|
| 160 |
+
if (
|
| 161 |
+
"MixFormerSequentialConfig" in model_config.__class__.__name__
|
| 162 |
+
and cfg.model_type == "AutoModelForCausalLM"
|
| 163 |
+
):
|
| 164 |
+
module_name = model_config.__class__.__module__.replace(
|
| 165 |
+
".configuration_mixformer_sequential", ".modeling_mixformer_sequential"
|
| 166 |
+
)
|
| 167 |
+
modeling_phi = importlib.import_module(module_name)
|
| 168 |
+
# pylint:disable=protected-access
|
| 169 |
+
modeling_phi.MixFormerSequentialForCausalLM._no_split_modules = [
|
| 170 |
+
"ParallelBlock"
|
| 171 |
+
]
|
| 172 |
+
|
| 173 |
model_kwargs = {}
|
| 174 |
if cfg.model_revision:
|
| 175 |
model_kwargs["revision"] = cfg.model_revision
|
| 176 |
if cfg.gptq:
|
|
|
|
| 177 |
if not hasattr(model_config, "quantization_config"):
|
| 178 |
LOG.warning("model config does not contain quantization_config information")
|
| 179 |
else:
|