Maciek
commited on
Fix Google Colab notebook 2024-05 (#1662) [skip ci]
Browse files* include mlflow installation in the colab notebook
Without explicitly installing mlflow the `accelerate launch` command fails.
* update the colab noteboko to use the latest tinyllama config
examples/colab-notebooks/colab-axolotl-example.ipynb
CHANGED
|
@@ -1,216 +1,223 @@
|
|
| 1 |
{
|
| 2 |
-
|
| 3 |
-
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
"colab": {
|
| 39 |
-
"base_uri": "https://localhost:8080/"
|
| 40 |
-
},
|
| 41 |
-
"id": "3c3yGAwnOIdi",
|
| 42 |
-
"outputId": "e3777b5a-40ef-424f-e181-62dfecd1dd01"
|
| 43 |
-
},
|
| 44 |
-
"outputs": [],
|
| 45 |
-
"source": [
|
| 46 |
-
"!pip install torch==\"2.1.2\"\n",
|
| 47 |
-
"!pip install -e git+https://github.com/OpenAccess-AI-Collective/axolotl#egg=axolotl\n",
|
| 48 |
-
"!pip install flash-attn==\"2.5.0\"\n",
|
| 49 |
-
"!pip install deepspeed==\"0.13.1\""
|
| 50 |
-
]
|
| 51 |
-
},
|
| 52 |
-
{
|
| 53 |
-
"cell_type": "markdown",
|
| 54 |
-
"metadata": {
|
| 55 |
-
"id": "BW2MFr7HTjub"
|
| 56 |
-
},
|
| 57 |
-
"source": [
|
| 58 |
-
"## Create an yaml config file"
|
| 59 |
-
]
|
| 60 |
-
},
|
| 61 |
-
{
|
| 62 |
-
"cell_type": "code",
|
| 63 |
-
"execution_count": null,
|
| 64 |
-
"metadata": {
|
| 65 |
-
"id": "9pkF2dSoQEUN"
|
| 66 |
-
},
|
| 67 |
-
"outputs": [],
|
| 68 |
-
"source": [
|
| 69 |
-
"import yaml\n",
|
| 70 |
-
"\n",
|
| 71 |
-
"# Your YAML string\n",
|
| 72 |
-
"yaml_string = \"\"\"\n",
|
| 73 |
-
"base_model: TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T\n",
|
| 74 |
-
"model_type: LlamaForCausalLM\n",
|
| 75 |
-
"tokenizer_type: LlamaTokenizer\n",
|
| 76 |
-
"is_llama_derived_model: true\n",
|
| 77 |
-
"\n",
|
| 78 |
-
"load_in_8bit: false\n",
|
| 79 |
-
"load_in_4bit: true\n",
|
| 80 |
-
"strict: false\n",
|
| 81 |
-
"\n",
|
| 82 |
-
"datasets:\n",
|
| 83 |
-
" - path: mhenrichsen/alpaca_2k_test\n",
|
| 84 |
-
" type: alpaca\n",
|
| 85 |
-
"dataset_prepared_path:\n",
|
| 86 |
-
"val_set_size: 0.05\n",
|
| 87 |
-
"output_dir: ./outputs/qlora-out\n",
|
| 88 |
-
"\n",
|
| 89 |
-
"adapter: qlora\n",
|
| 90 |
-
"lora_model_dir:\n",
|
| 91 |
-
"\n",
|
| 92 |
-
"sequence_len: 1096\n",
|
| 93 |
-
"sample_packing: true\n",
|
| 94 |
-
"pad_to_sequence_len: true\n",
|
| 95 |
-
"\n",
|
| 96 |
-
"lora_r: 32\n",
|
| 97 |
-
"lora_alpha: 16\n",
|
| 98 |
-
"lora_dropout: 0.05\n",
|
| 99 |
-
"lora_target_modules:\n",
|
| 100 |
-
"lora_target_linear: true\n",
|
| 101 |
-
"lora_fan_in_fan_out:\n",
|
| 102 |
-
"\n",
|
| 103 |
-
"wandb_project:\n",
|
| 104 |
-
"wandb_entity:\n",
|
| 105 |
-
"wandb_watch:\n",
|
| 106 |
-
"wandb_name:\n",
|
| 107 |
-
"wandb_log_model:\n",
|
| 108 |
-
"\n",
|
| 109 |
-
"mlflow_experiment_name: colab-example\n",
|
| 110 |
-
"\n",
|
| 111 |
-
"gradient_accumulation_steps: 1\n",
|
| 112 |
-
"micro_batch_size: 1\n",
|
| 113 |
-
"num_epochs: 4\n",
|
| 114 |
-
"max_steps: 20\n",
|
| 115 |
-
"optimizer: paged_adamw_32bit\n",
|
| 116 |
-
"lr_scheduler: cosine\n",
|
| 117 |
-
"learning_rate: 0.0002\n",
|
| 118 |
-
"\n",
|
| 119 |
-
"train_on_inputs: false\n",
|
| 120 |
-
"group_by_length: false\n",
|
| 121 |
-
"bf16: false\n",
|
| 122 |
-
"fp16: true\n",
|
| 123 |
-
"tf32: false\n",
|
| 124 |
-
"\n",
|
| 125 |
-
"gradient_checkpointing: true\n",
|
| 126 |
-
"early_stopping_patience:\n",
|
| 127 |
-
"resume_from_checkpoint:\n",
|
| 128 |
-
"local_rank:\n",
|
| 129 |
-
"logging_steps: 1\n",
|
| 130 |
-
"xformers_attention:\n",
|
| 131 |
-
"flash_attention: false\n",
|
| 132 |
-
"\n",
|
| 133 |
-
"warmup_steps: 10\n",
|
| 134 |
-
"evals_per_epoch:\n",
|
| 135 |
-
"saves_per_epoch:\n",
|
| 136 |
-
"debug:\n",
|
| 137 |
-
"deepspeed:\n",
|
| 138 |
-
"weight_decay: 0.0\n",
|
| 139 |
-
"fsdp:\n",
|
| 140 |
-
"fsdp_config:\n",
|
| 141 |
-
"special_tokens:\n",
|
| 142 |
-
"\n",
|
| 143 |
-
"\"\"\"\n",
|
| 144 |
-
"\n",
|
| 145 |
-
"# Convert the YAML string to a Python dictionary\n",
|
| 146 |
-
"yaml_dict = yaml.safe_load(yaml_string)\n",
|
| 147 |
-
"\n",
|
| 148 |
-
"# Specify your file path\n",
|
| 149 |
-
"file_path = 'test_axolotl.yaml'\n",
|
| 150 |
-
"\n",
|
| 151 |
-
"# Write the YAML file\n",
|
| 152 |
-
"with open(file_path, 'w') as file:\n",
|
| 153 |
-
" yaml.dump(yaml_dict, file)\n"
|
| 154 |
-
]
|
| 155 |
-
},
|
| 156 |
-
{
|
| 157 |
-
"cell_type": "markdown",
|
| 158 |
-
"metadata": {
|
| 159 |
-
"id": "bidoj8YLTusD"
|
| 160 |
-
},
|
| 161 |
-
"source": [
|
| 162 |
-
"## Launch the training"
|
| 163 |
-
]
|
| 164 |
-
},
|
| 165 |
-
{
|
| 166 |
-
"cell_type": "code",
|
| 167 |
-
"execution_count": null,
|
| 168 |
-
"metadata": {
|
| 169 |
-
"colab": {
|
| 170 |
-
"base_uri": "https://localhost:8080/"
|
| 171 |
-
},
|
| 172 |
-
"id": "ydTI2Jk2RStU",
|
| 173 |
-
"outputId": "d6d0df17-4b53-439c-c802-22c0456d301b"
|
| 174 |
-
},
|
| 175 |
-
"outputs": [],
|
| 176 |
-
"source": [
|
| 177 |
-
"# Buy using the ! the comand will be executed as a bash command\n",
|
| 178 |
-
"!accelerate launch -m axolotl.cli.train /content/test_axolotl.yaml"
|
| 179 |
-
]
|
| 180 |
-
},
|
| 181 |
-
{
|
| 182 |
-
"cell_type": "markdown",
|
| 183 |
-
"metadata": {},
|
| 184 |
-
"source": [
|
| 185 |
-
"## Play with inference"
|
| 186 |
-
]
|
| 187 |
-
},
|
| 188 |
-
{
|
| 189 |
-
"cell_type": "code",
|
| 190 |
-
"execution_count": null,
|
| 191 |
-
"metadata": {},
|
| 192 |
-
"outputs": [],
|
| 193 |
-
"source": [
|
| 194 |
-
"# Buy using the ! the comand will be executed as a bash command\n",
|
| 195 |
-
"!accelerate launch -m axolotl.cli.inference /content/test_axolotl.yaml \\\n",
|
| 196 |
-
" --qlora_model_dir=\"./qlora-out\" --gradio"
|
| 197 |
-
]
|
| 198 |
-
}
|
| 199 |
-
],
|
| 200 |
-
"metadata": {
|
| 201 |
-
"accelerator": "GPU",
|
| 202 |
"colab": {
|
| 203 |
-
|
| 204 |
-
"provenance": []
|
| 205 |
},
|
| 206 |
-
"
|
| 207 |
-
|
| 208 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 209 |
},
|
| 210 |
-
"
|
| 211 |
-
|
| 212 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 213 |
},
|
| 214 |
-
"
|
| 215 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 216 |
}
|
|
|
|
| 1 |
{
|
| 2 |
+
"cells": [
|
| 3 |
+
{
|
| 4 |
+
"cell_type": "markdown",
|
| 5 |
+
"metadata": {
|
| 6 |
+
"id": "AKjdG7tbTb-n"
|
| 7 |
+
},
|
| 8 |
+
"source": [
|
| 9 |
+
"# Example notebook for running Axolotl on google colab"
|
| 10 |
+
]
|
| 11 |
+
},
|
| 12 |
+
{
|
| 13 |
+
"cell_type": "code",
|
| 14 |
+
"execution_count": null,
|
| 15 |
+
"metadata": {
|
| 16 |
+
"id": "RcbNpOgWRcii"
|
| 17 |
+
},
|
| 18 |
+
"outputs": [],
|
| 19 |
+
"source": [
|
| 20 |
+
"import torch\n",
|
| 21 |
+
"# Check so there is a gpu available, a T4(free tier) is enough to run this notebook\n",
|
| 22 |
+
"assert (torch.cuda.is_available()==True)"
|
| 23 |
+
]
|
| 24 |
+
},
|
| 25 |
+
{
|
| 26 |
+
"cell_type": "markdown",
|
| 27 |
+
"metadata": {
|
| 28 |
+
"id": "h3nLav8oTRA5"
|
| 29 |
+
},
|
| 30 |
+
"source": [
|
| 31 |
+
"## Install Axolotl and dependencies"
|
| 32 |
+
]
|
| 33 |
+
},
|
| 34 |
+
{
|
| 35 |
+
"cell_type": "code",
|
| 36 |
+
"execution_count": null,
|
| 37 |
+
"metadata": {
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 38 |
"colab": {
|
| 39 |
+
"base_uri": "https://localhost:8080/"
|
|
|
|
| 40 |
},
|
| 41 |
+
"id": "3c3yGAwnOIdi",
|
| 42 |
+
"outputId": "e3777b5a-40ef-424f-e181-62dfecd1dd01"
|
| 43 |
+
},
|
| 44 |
+
"outputs": [],
|
| 45 |
+
"source": [
|
| 46 |
+
"!pip install torch==\"2.1.2\"\n",
|
| 47 |
+
"!pip install -e git+https://github.com/OpenAccess-AI-Collective/axolotl#egg=axolotl\n",
|
| 48 |
+
"!pip install flash-attn==\"2.5.0\"\n",
|
| 49 |
+
"!pip install deepspeed==\"0.13.1\"!pip install mlflow==\"2.13.0\""
|
| 50 |
+
]
|
| 51 |
+
},
|
| 52 |
+
{
|
| 53 |
+
"cell_type": "markdown",
|
| 54 |
+
"metadata": {
|
| 55 |
+
"id": "BW2MFr7HTjub"
|
| 56 |
+
},
|
| 57 |
+
"source": [
|
| 58 |
+
"## Create an yaml config file"
|
| 59 |
+
]
|
| 60 |
+
},
|
| 61 |
+
{
|
| 62 |
+
"cell_type": "code",
|
| 63 |
+
"execution_count": null,
|
| 64 |
+
"metadata": {
|
| 65 |
+
"id": "9pkF2dSoQEUN"
|
| 66 |
+
},
|
| 67 |
+
"outputs": [],
|
| 68 |
+
"source": [
|
| 69 |
+
"import yaml\n",
|
| 70 |
+
"\n",
|
| 71 |
+
"# Your YAML string\n",
|
| 72 |
+
"yaml_string = \"\"\"\n",
|
| 73 |
+
"base_model: TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T\n",
|
| 74 |
+
"model_type: LlamaForCausalLM\n",
|
| 75 |
+
"tokenizer_type: LlamaTokenizer\n",
|
| 76 |
+
"\n",
|
| 77 |
+
"load_in_8bit: false\n",
|
| 78 |
+
"load_in_4bit: true\n",
|
| 79 |
+
"strict: false\n",
|
| 80 |
+
"\n",
|
| 81 |
+
"datasets:\n",
|
| 82 |
+
" - path: mhenrichsen/alpaca_2k_test\n",
|
| 83 |
+
" type: alpaca\n",
|
| 84 |
+
"dataset_prepared_path:\n",
|
| 85 |
+
"val_set_size: 0.05\n",
|
| 86 |
+
"output_dir: ./outputs/qlora-out\n",
|
| 87 |
+
"\n",
|
| 88 |
+
"adapter: qlora\n",
|
| 89 |
+
"lora_model_dir:\n",
|
| 90 |
+
"\n",
|
| 91 |
+
"sequence_len: 4096\n",
|
| 92 |
+
"sample_packing: true\n",
|
| 93 |
+
"eval_sample_packing: false\n",
|
| 94 |
+
"pad_to_sequence_len: true\n",
|
| 95 |
+
"\n",
|
| 96 |
+
"lora_r: 32\n",
|
| 97 |
+
"lora_alpha: 16\n",
|
| 98 |
+
"lora_dropout: 0.05\n",
|
| 99 |
+
"lora_target_modules:\n",
|
| 100 |
+
"lora_target_linear: true\n",
|
| 101 |
+
"lora_fan_in_fan_out:\n",
|
| 102 |
+
"\n",
|
| 103 |
+
"wandb_project:\n",
|
| 104 |
+
"wandb_entity:\n",
|
| 105 |
+
"wandb_watch:\n",
|
| 106 |
+
"wandb_name:\n",
|
| 107 |
+
"wandb_log_model:\n",
|
| 108 |
+
"\n",
|
| 109 |
+
"gradient_accumulation_steps: 4\n",
|
| 110 |
+
"micro_batch_size: 2\n",
|
| 111 |
+
"num_epochs: 4\n",
|
| 112 |
+
"optimizer: paged_adamw_32bit\n",
|
| 113 |
+
"lr_scheduler: cosine\n",
|
| 114 |
+
"learning_rate: 0.0002\n",
|
| 115 |
+
"\n",
|
| 116 |
+
"train_on_inputs: false\n",
|
| 117 |
+
"group_by_length: false\n",
|
| 118 |
+
"bf16: auto\n",
|
| 119 |
+
"fp16:\n",
|
| 120 |
+
"tf32: false\n",
|
| 121 |
+
"\n",
|
| 122 |
+
"gradient_checkpointing: true\n",
|
| 123 |
+
"early_stopping_patience:\n",
|
| 124 |
+
"resume_from_checkpoint:\n",
|
| 125 |
+
"local_rank:\n",
|
| 126 |
+
"logging_steps: 1\n",
|
| 127 |
+
"xformers_attention:\n",
|
| 128 |
+
"flash_attention: true\n",
|
| 129 |
+
"\n",
|
| 130 |
+
"warmup_steps: 10\n",
|
| 131 |
+
"evals_per_epoch: 4\n",
|
| 132 |
+
"saves_per_epoch: 1\n",
|
| 133 |
+
"debug:\n",
|
| 134 |
+
"deepspeed:\n",
|
| 135 |
+
"weight_decay: 0.0\n",
|
| 136 |
+
"fsdp:\n",
|
| 137 |
+
"fsdp_config:\n",
|
| 138 |
+
"special_tokens:\n",
|
| 139 |
+
"\n",
|
| 140 |
+
"\"\"\"\n",
|
| 141 |
+
"\n",
|
| 142 |
+
"# Convert the YAML string to a Python dictionary\n",
|
| 143 |
+
"yaml_dict = yaml.safe_load(yaml_string)\n",
|
| 144 |
+
"\n",
|
| 145 |
+
"# Specify your file path\n",
|
| 146 |
+
"file_path = 'test_axolotl.yaml'\n",
|
| 147 |
+
"\n",
|
| 148 |
+
"# Write the YAML file\n",
|
| 149 |
+
"with open(file_path, 'w') as file:\n",
|
| 150 |
+
" yaml.dump(yaml_dict, file)\n"
|
| 151 |
+
]
|
| 152 |
+
},
|
| 153 |
+
{
|
| 154 |
+
"cell_type": "markdown",
|
| 155 |
+
"metadata": {
|
| 156 |
+
"id": "bidoj8YLTusD"
|
| 157 |
+
},
|
| 158 |
+
"source": [
|
| 159 |
+
"## Launch the training"
|
| 160 |
+
]
|
| 161 |
+
},
|
| 162 |
+
{
|
| 163 |
+
"cell_type": "code",
|
| 164 |
+
"execution_count": null,
|
| 165 |
+
"metadata": {
|
| 166 |
+
"colab": {
|
| 167 |
+
"base_uri": "https://localhost:8080/"
|
| 168 |
},
|
| 169 |
+
"id": "ydTI2Jk2RStU",
|
| 170 |
+
"outputId": "d6d0df17-4b53-439c-c802-22c0456d301b"
|
| 171 |
+
},
|
| 172 |
+
"outputs": [],
|
| 173 |
+
"source": [
|
| 174 |
+
"# Buy using the ! the comand will be executed as a bash command\n",
|
| 175 |
+
"!accelerate launch -m axolotl.cli.train /content/test_axolotl.yaml"
|
| 176 |
+
]
|
| 177 |
+
},
|
| 178 |
+
{
|
| 179 |
+
"cell_type": "markdown",
|
| 180 |
+
"metadata": {},
|
| 181 |
+
"source": [
|
| 182 |
+
"## Play with inference"
|
| 183 |
+
]
|
| 184 |
+
},
|
| 185 |
+
{
|
| 186 |
+
"cell_type": "code",
|
| 187 |
+
"execution_count": null,
|
| 188 |
+
"metadata": {},
|
| 189 |
+
"outputs": [],
|
| 190 |
+
"source": [
|
| 191 |
+
"# Buy using the ! the comand will be executed as a bash command\n",
|
| 192 |
+
"!accelerate launch -m axolotl.cli.inference /content/test_axolotl.yaml \\\n",
|
| 193 |
+
" --qlora_model_dir=\"./qlora-out\" --gradio"
|
| 194 |
+
]
|
| 195 |
+
}
|
| 196 |
+
],
|
| 197 |
+
"metadata": {
|
| 198 |
+
"accelerator": "GPU",
|
| 199 |
+
"colab": {
|
| 200 |
+
"gpuType": "T4",
|
| 201 |
+
"provenance": []
|
| 202 |
+
},
|
| 203 |
+
"kernelspec": {
|
| 204 |
+
"display_name": "Python 3 (ipykernel)",
|
| 205 |
+
"language": "python",
|
| 206 |
+
"name": "python3"
|
| 207 |
},
|
| 208 |
+
"language_info": {
|
| 209 |
+
"codemirror_mode": {
|
| 210 |
+
"name": "ipython",
|
| 211 |
+
"version": 3
|
| 212 |
+
},
|
| 213 |
+
"file_extension": ".py",
|
| 214 |
+
"mimetype": "text/x-python",
|
| 215 |
+
"name": "python",
|
| 216 |
+
"nbconvert_exporter": "python",
|
| 217 |
+
"pygments_lexer": "ipython3",
|
| 218 |
+
"version": "3.12.1"
|
| 219 |
+
}
|
| 220 |
+
},
|
| 221 |
+
"nbformat": 4,
|
| 222 |
+
"nbformat_minor": 4
|
| 223 |
}
|