add support for defined train split (#654)
Browse files- README.md +10 -0
- src/axolotl/prompt_strategies/context_qa.py +41 -0
- src/axolotl/utils/data.py +10 -0
README.md
CHANGED
|
@@ -250,6 +250,10 @@ Have dataset(s) in one of the following format (JSONL recommended):
|
|
| 250 |
```json
|
| 251 |
{"article": "...", "question": "...", "answer": "..."}
|
| 252 |
```
|
|
|
|
|
|
|
|
|
|
|
|
|
| 253 |
- `context_qa.load_404`: in context question answering from an article, with default response for no answer from context
|
| 254 |
```json
|
| 255 |
{"article": "...", "unanswerable_question": "..."}
|
|
@@ -356,6 +360,12 @@ See [examples](examples) for quick start. It is recommended to duplicate and mod
|
|
| 356 |
- path: data.jsonl # or json
|
| 357 |
ds_type: json # see other options below
|
| 358 |
type: alpaca
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 359 |
```
|
| 360 |
|
| 361 |
- loading
|
|
|
|
| 250 |
```json
|
| 251 |
{"article": "...", "question": "...", "answer": "..."}
|
| 252 |
```
|
| 253 |
+
- `context_qa.load_v2`: in context question answering (alternate)
|
| 254 |
+
```json
|
| 255 |
+
{"context": "...", "question": "...", "answer": "..."}
|
| 256 |
+
```
|
| 257 |
- `context_qa.load_404`: in context question answering from an article, with default response for no answer from context
|
| 258 |
```json
|
| 259 |
{"article": "...", "unanswerable_question": "..."}
|
|
|
|
| 360 |
- path: data.jsonl # or json
|
| 361 |
ds_type: json # see other options below
|
| 362 |
type: alpaca
|
| 363 |
+
|
| 364 |
+
# dataset with splits, but no train split
|
| 365 |
+
dataset:
|
| 366 |
+
- path: knowrohit07/know_sql
|
| 367 |
+
type: context_qa.load_v2
|
| 368 |
+
train_on_split: validation
|
| 369 |
```
|
| 370 |
|
| 371 |
- loading
|
src/axolotl/prompt_strategies/context_qa.py
CHANGED
|
@@ -24,6 +24,15 @@ def load(tokenizer, cfg):
|
|
| 24 |
)
|
| 25 |
|
| 26 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 27 |
class AlpacaContextPrompter(AlpacaPrompter):
|
| 28 |
"""
|
| 29 |
Customized system prompted for concise QA
|
|
@@ -50,6 +59,38 @@ class AlpacaContextPromptTokenizingStrategy(InstructionPromptTokenizingStrategy)
|
|
| 50 |
)
|
| 51 |
|
| 52 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 53 |
class AlpacaMissingInfoContextPromptTokenizingStrategy(
|
| 54 |
InstructionPromptTokenizingStrategy
|
| 55 |
):
|
|
|
|
| 24 |
)
|
| 25 |
|
| 26 |
|
| 27 |
+
def load_v2(tokenizer, cfg):
|
| 28 |
+
return ContextQaV2PromptTokenizingStrategy(
|
| 29 |
+
ContextV2Prompter(),
|
| 30 |
+
tokenizer,
|
| 31 |
+
cfg.train_on_inputs,
|
| 32 |
+
cfg.sequence_len,
|
| 33 |
+
)
|
| 34 |
+
|
| 35 |
+
|
| 36 |
class AlpacaContextPrompter(AlpacaPrompter):
|
| 37 |
"""
|
| 38 |
Customized system prompted for concise QA
|
|
|
|
| 59 |
)
|
| 60 |
|
| 61 |
|
| 62 |
+
class ContextQaV2PromptTokenizingStrategy(InstructionPromptTokenizingStrategy):
|
| 63 |
+
"""
|
| 64 |
+
Tokenization Strategy to combine in-context article with a question and answer
|
| 65 |
+
"""
|
| 66 |
+
|
| 67 |
+
def parse_instruction_fields(self, prompt) -> Tuple[str, str, str]:
|
| 68 |
+
return (
|
| 69 |
+
"Context: "
|
| 70 |
+
+ prompt["context"]
|
| 71 |
+
+ "\nQuestion: "
|
| 72 |
+
+ prompt["question"]
|
| 73 |
+
+ "\n",
|
| 74 |
+
"",
|
| 75 |
+
"Answer: " + prompt["answer"],
|
| 76 |
+
)
|
| 77 |
+
|
| 78 |
+
|
| 79 |
+
class ContextV2Prompter(AlpacaPrompter):
|
| 80 |
+
"""
|
| 81 |
+
Customized system prompted for concise QA
|
| 82 |
+
"""
|
| 83 |
+
|
| 84 |
+
system_prompt = ""
|
| 85 |
+
system_no_input_prompt = ""
|
| 86 |
+
|
| 87 |
+
def match_prompt_style(self):
|
| 88 |
+
# pylint: disable=duplicate-code
|
| 89 |
+
self.turn_format = "{instruction}\n{input}"
|
| 90 |
+
self.turn_no_input_format = "{instruction}"
|
| 91 |
+
self.system_format = "{system}"
|
| 92 |
+
|
| 93 |
+
|
| 94 |
class AlpacaMissingInfoContextPromptTokenizingStrategy(
|
| 95 |
InstructionPromptTokenizingStrategy
|
| 96 |
):
|
src/axolotl/utils/data.py
CHANGED
|
@@ -247,6 +247,16 @@ def load_tokenized_prepared_datasets(
|
|
| 247 |
d_prompt_style = d_type_split[1] if len(d_type_split) > 1 else None
|
| 248 |
if "train" in ds:
|
| 249 |
ds = ds["train"]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 250 |
if (
|
| 251 |
"input_ids" in ds.features
|
| 252 |
and "attention_mask" in ds.features
|
|
|
|
| 247 |
d_prompt_style = d_type_split[1] if len(d_type_split) > 1 else None
|
| 248 |
if "train" in ds:
|
| 249 |
ds = ds["train"]
|
| 250 |
+
elif (
|
| 251 |
+
isinstance(ds, DatasetDict)
|
| 252 |
+
and d.train_on_split
|
| 253 |
+
and d.train_on_split in ds
|
| 254 |
+
):
|
| 255 |
+
ds = ds[d.train_on_split]
|
| 256 |
+
elif isinstance(ds, DatasetDict):
|
| 257 |
+
raise ValueError(
|
| 258 |
+
f"no train split found for dataset {d.path}, you may specify a split with 'train_on_split: `"
|
| 259 |
+
)
|
| 260 |
if (
|
| 261 |
"input_ids" in ds.features
|
| 262 |
and "attention_mask" in ds.features
|