precompute dpo logprobs setting and fixes (#1199) [skip ci]
Browse files* add support for precompute_ref_log_probs for dpo
* add chatml.icr type for argilla orca dpo
* update inline doc
* also set use_reentrant to false for dpo when not set
* don't set use_reentrant to true for rl
* make sure to set gradient checkpointing too
src/axolotl/core/trainer_builder.py
CHANGED
|
@@ -651,7 +651,7 @@ class HFCausalTrainerBuilder(TrainerBuilderBase):
|
|
| 651 |
training_arguments_kwargs[
|
| 652 |
"gradient_checkpointing"
|
| 653 |
] = self.cfg.gradient_checkpointing
|
| 654 |
-
if self.cfg.gradient_checkpointing_kwargs:
|
| 655 |
training_arguments_kwargs[
|
| 656 |
"gradient_checkpointing_kwargs"
|
| 657 |
] = self.cfg.gradient_checkpointing_kwargs
|
|
@@ -1028,6 +1028,18 @@ class HFDPOTrainerBuilder(TrainerBuilderBase):
|
|
| 1028 |
training_args_kwargs[
|
| 1029 |
"dataloader_prefetch_factor"
|
| 1030 |
] = self.cfg.dataloader_prefetch_factor
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1031 |
|
| 1032 |
training_args = TrainingArguments(
|
| 1033 |
per_device_train_batch_size=self.cfg.micro_batch_size,
|
|
@@ -1038,9 +1050,6 @@ class HFDPOTrainerBuilder(TrainerBuilderBase):
|
|
| 1038 |
save_steps=self.cfg.save_steps,
|
| 1039 |
output_dir=self.cfg.output_dir,
|
| 1040 |
warmup_steps=self.cfg.warmup_steps,
|
| 1041 |
-
gradient_checkpointing=self.cfg.gradient_checkpointing,
|
| 1042 |
-
gradient_checkpointing_kwargs=self.cfg.gradient_checkpointing_kwargs
|
| 1043 |
-
or {"use_reentrant": False},
|
| 1044 |
logging_first_step=True,
|
| 1045 |
logging_steps=1,
|
| 1046 |
optim=self.cfg.optimizer,
|
|
@@ -1063,6 +1072,10 @@ class HFDPOTrainerBuilder(TrainerBuilderBase):
|
|
| 1063 |
dpo_trainer_kwargs["eval_dataset"] = self.eval_dataset
|
| 1064 |
if self.cfg.adapter and self.peft_config:
|
| 1065 |
dpo_trainer_kwargs["peft_config"] = self.peft_config
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1066 |
dpo_trainer = DPOTrainer(
|
| 1067 |
self.model,
|
| 1068 |
self.model_ref,
|
|
|
|
| 651 |
training_arguments_kwargs[
|
| 652 |
"gradient_checkpointing"
|
| 653 |
] = self.cfg.gradient_checkpointing
|
| 654 |
+
if self.cfg.gradient_checkpointing_kwargs is not None:
|
| 655 |
training_arguments_kwargs[
|
| 656 |
"gradient_checkpointing_kwargs"
|
| 657 |
] = self.cfg.gradient_checkpointing_kwargs
|
|
|
|
| 1028 |
training_args_kwargs[
|
| 1029 |
"dataloader_prefetch_factor"
|
| 1030 |
] = self.cfg.dataloader_prefetch_factor
|
| 1031 |
+
if self.cfg.gradient_checkpointing:
|
| 1032 |
+
training_args_kwargs[
|
| 1033 |
+
"gradient_checkpointing"
|
| 1034 |
+
] = self.cfg.gradient_checkpointing
|
| 1035 |
+
if self.cfg.gradient_checkpointing_kwargs is not None:
|
| 1036 |
+
training_args_kwargs[
|
| 1037 |
+
"gradient_checkpointing_kwargs"
|
| 1038 |
+
] = self.cfg.gradient_checkpointing_kwargs
|
| 1039 |
+
else:
|
| 1040 |
+
training_args_kwargs["gradient_checkpointing_kwargs"] = {
|
| 1041 |
+
"use_reentrant": False
|
| 1042 |
+
}
|
| 1043 |
|
| 1044 |
training_args = TrainingArguments(
|
| 1045 |
per_device_train_batch_size=self.cfg.micro_batch_size,
|
|
|
|
| 1050 |
save_steps=self.cfg.save_steps,
|
| 1051 |
output_dir=self.cfg.output_dir,
|
| 1052 |
warmup_steps=self.cfg.warmup_steps,
|
|
|
|
|
|
|
|
|
|
| 1053 |
logging_first_step=True,
|
| 1054 |
logging_steps=1,
|
| 1055 |
optim=self.cfg.optimizer,
|
|
|
|
| 1072 |
dpo_trainer_kwargs["eval_dataset"] = self.eval_dataset
|
| 1073 |
if self.cfg.adapter and self.peft_config:
|
| 1074 |
dpo_trainer_kwargs["peft_config"] = self.peft_config
|
| 1075 |
+
if self.cfg.precompute_ref_log_probs is not None:
|
| 1076 |
+
dpo_trainer_kwargs[
|
| 1077 |
+
"precompute_ref_log_probs"
|
| 1078 |
+
] = self.cfg.precompute_ref_log_probs
|
| 1079 |
dpo_trainer = DPOTrainer(
|
| 1080 |
self.model,
|
| 1081 |
self.model_ref,
|
src/axolotl/prompt_strategies/dpo/chatml.py
CHANGED
|
@@ -23,6 +23,31 @@ def argilla(
|
|
| 23 |
return transform_fn
|
| 24 |
|
| 25 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 26 |
def intel(cfg): # pylint: disable=possibly-unused-variable,unused-argument
|
| 27 |
"""
|
| 28 |
For Intel Orca DPO Pairs
|
|
|
|
| 23 |
return transform_fn
|
| 24 |
|
| 25 |
|
| 26 |
+
def icr(
|
| 27 |
+
cfg,
|
| 28 |
+
): # pylint: disable=possibly-unused-variable,unused-argument
|
| 29 |
+
"""
|
| 30 |
+
chatml transforms for datasets with system, input, chosen, rejected
|
| 31 |
+
ex. https://huggingface.co/datasets/argilla/distilabel-intel-orca-dpo-pairs
|
| 32 |
+
"""
|
| 33 |
+
|
| 34 |
+
def transform_fn(sample):
|
| 35 |
+
if "system" in sample and sample["system"]:
|
| 36 |
+
sample["prompt"] = (
|
| 37 |
+
f"<|im_start|>system\n{sample['system']}<|im_end|>\n"
|
| 38 |
+
f"<|im_start|>user\n{sample['input']}<|im_end|>\n<|im_start|>assistant\n"
|
| 39 |
+
)
|
| 40 |
+
else:
|
| 41 |
+
sample[
|
| 42 |
+
"prompt"
|
| 43 |
+
] = f"<|im_start|>user\n{sample['input']}<|im_end|>\n<|im_start|>assistant\n"
|
| 44 |
+
sample["chosen"] = f"{sample['chosen']}<|im_end|>"
|
| 45 |
+
sample["rejected"] = f"{sample['rejected']}<|im_end|>"
|
| 46 |
+
return sample
|
| 47 |
+
|
| 48 |
+
return transform_fn
|
| 49 |
+
|
| 50 |
+
|
| 51 |
def intel(cfg): # pylint: disable=possibly-unused-variable,unused-argument
|
| 52 |
"""
|
| 53 |
For Intel Orca DPO Pairs
|
src/axolotl/utils/config.py
CHANGED
|
@@ -163,6 +163,7 @@ def normalize_config(cfg):
|
|
| 163 |
cfg.gradient_checkpointing
|
| 164 |
and cfg.unfrozen_parameters is None
|
| 165 |
and cfg.gradient_checkpointing_kwargs is None
|
|
|
|
| 166 |
):
|
| 167 |
cfg.gradient_checkpointing_kwargs = {"use_reentrant": True}
|
| 168 |
|
|
|
|
| 163 |
cfg.gradient_checkpointing
|
| 164 |
and cfg.unfrozen_parameters is None
|
| 165 |
and cfg.gradient_checkpointing_kwargs is None
|
| 166 |
+
and cfg.rl is None
|
| 167 |
):
|
| 168 |
cfg.gradient_checkpointing_kwargs = {"use_reentrant": True}
|
| 169 |
|