load the tokenizer seperately from the model
Browse files- scripts/finetune.py +21 -12
- src/axolotl/utils/models.py +41 -42
scripts/finetune.py
CHANGED
|
@@ -21,7 +21,7 @@ src_dir = os.path.join(project_root, "src")
|
|
| 21 |
sys.path.insert(0, src_dir)
|
| 22 |
|
| 23 |
from axolotl.utils.data import load_prepare_datasets
|
| 24 |
-
from axolotl.utils.models import load_model
|
| 25 |
from axolotl.utils.trainer import setup_trainer
|
| 26 |
from axolotl.utils.wandb import setup_wandb_env_vars
|
| 27 |
|
|
@@ -161,13 +161,30 @@ def train(
|
|
| 161 |
|
| 162 |
validate_config(cfg)
|
| 163 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 164 |
# Load the model and tokenizer
|
| 165 |
-
logging.info("loading model
|
| 166 |
-
model,
|
| 167 |
cfg.base_model,
|
| 168 |
cfg.base_model_config,
|
| 169 |
cfg.model_type,
|
| 170 |
-
|
| 171 |
cfg,
|
| 172 |
adapter=cfg.adapter,
|
| 173 |
inference=("inference" in kwargs),
|
|
@@ -192,10 +209,6 @@ def train(
|
|
| 192 |
model.save_pretrained(cfg.output_dir)
|
| 193 |
return
|
| 194 |
|
| 195 |
-
train_dataset, eval_dataset = load_prepare_datasets(
|
| 196 |
-
tokenizer, cfg, DEFAULT_DATASET_PREPARED_PATH
|
| 197 |
-
)
|
| 198 |
-
|
| 199 |
if cfg.debug:
|
| 200 |
logging.info("check_dataset_labels...")
|
| 201 |
check_dataset_labels(
|
|
@@ -205,10 +218,6 @@ def train(
|
|
| 205 |
tokenizer,
|
| 206 |
)
|
| 207 |
|
| 208 |
-
if prepare_ds_only:
|
| 209 |
-
logging.info("Finished preparing dataset. Exiting...")
|
| 210 |
-
return
|
| 211 |
-
|
| 212 |
trainer = setup_trainer(cfg, train_dataset, eval_dataset, model, tokenizer)
|
| 213 |
|
| 214 |
model.config.use_cache = False
|
|
|
|
| 21 |
sys.path.insert(0, src_dir)
|
| 22 |
|
| 23 |
from axolotl.utils.data import load_prepare_datasets
|
| 24 |
+
from axolotl.utils.models import load_model, load_tokenizer
|
| 25 |
from axolotl.utils.trainer import setup_trainer
|
| 26 |
from axolotl.utils.wandb import setup_wandb_env_vars
|
| 27 |
|
|
|
|
| 161 |
|
| 162 |
validate_config(cfg)
|
| 163 |
|
| 164 |
+
# load the tokenizer first
|
| 165 |
+
logging.info("loading tokenizer...")
|
| 166 |
+
tokenizer = load_tokenizer(
|
| 167 |
+
cfg.base_model_config,
|
| 168 |
+
cfg.tokenizer_type,
|
| 169 |
+
cfg
|
| 170 |
+
)
|
| 171 |
+
|
| 172 |
+
if "inference" not in kwargs and "shard" not in kwargs: # don't need to load dataset for these
|
| 173 |
+
train_dataset, eval_dataset = load_prepare_datasets(
|
| 174 |
+
tokenizer, cfg, DEFAULT_DATASET_PREPARED_PATH
|
| 175 |
+
)
|
| 176 |
+
|
| 177 |
+
if prepare_ds_only:
|
| 178 |
+
logging.info("Finished preparing dataset. Exiting...")
|
| 179 |
+
return
|
| 180 |
+
|
| 181 |
# Load the model and tokenizer
|
| 182 |
+
logging.info("loading model and peft_config...")
|
| 183 |
+
model, peft_config = load_model(
|
| 184 |
cfg.base_model,
|
| 185 |
cfg.base_model_config,
|
| 186 |
cfg.model_type,
|
| 187 |
+
tokenizer,
|
| 188 |
cfg,
|
| 189 |
adapter=cfg.adapter,
|
| 190 |
inference=("inference" in kwargs),
|
|
|
|
| 209 |
model.save_pretrained(cfg.output_dir)
|
| 210 |
return
|
| 211 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 212 |
if cfg.debug:
|
| 213 |
logging.info("check_dataset_labels...")
|
| 214 |
check_dataset_labels(
|
|
|
|
| 218 |
tokenizer,
|
| 219 |
)
|
| 220 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 221 |
trainer = setup_trainer(cfg, train_dataset, eval_dataset, model, tokenizer)
|
| 222 |
|
| 223 |
model.config.use_cache = False
|
src/axolotl/utils/models.py
CHANGED
|
@@ -7,7 +7,6 @@ from typing import Optional, Tuple, TYPE_CHECKING
|
|
| 7 |
import bitsandbytes as bnb
|
| 8 |
import torch
|
| 9 |
import transformers
|
| 10 |
-
from torch import nn
|
| 11 |
from transformers import (
|
| 12 |
AutoModelForCausalLM,
|
| 13 |
AutoTokenizer,
|
|
@@ -34,20 +33,56 @@ if TYPE_CHECKING:
|
|
| 34 |
from transformers import PreTrainedTokenizer
|
| 35 |
|
| 36 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 37 |
def load_model(
|
| 38 |
base_model,
|
| 39 |
base_model_config,
|
| 40 |
model_type,
|
| 41 |
-
|
| 42 |
cfg,
|
| 43 |
adapter="lora",
|
| 44 |
inference=False,
|
| 45 |
):
|
| 46 |
-
# type: (str, str, str, str, AttrDefault, Optional[str], bool) -> Tuple[PreTrainedModel,
|
| 47 |
|
| 48 |
# TODO refactor as a kwarg
|
| 49 |
load_in_8bit = cfg.load_in_8bit
|
| 50 |
-
tokenizer = None
|
| 51 |
is_llama_derived_model = "llama" in base_model or (
|
| 52 |
cfg.model_type and "llama" in cfg.model_type.lower()
|
| 53 |
)
|
|
@@ -122,7 +157,7 @@ def load_model(
|
|
| 122 |
model_path = str(cache_model_path)
|
| 123 |
except:
|
| 124 |
model_path = cfg.base_model
|
| 125 |
-
model,
|
| 126 |
base_model_config if base_model_config else base_model,
|
| 127 |
model_path,
|
| 128 |
device_map=cfg.device_map,
|
|
@@ -207,42 +242,6 @@ def load_model(
|
|
| 207 |
**model_kwargs,
|
| 208 |
)
|
| 209 |
|
| 210 |
-
if not tokenizer:
|
| 211 |
-
try:
|
| 212 |
-
if is_llama_derived_model and "LlamaTokenizer" in globals():
|
| 213 |
-
tokenizer = LlamaTokenizer.from_pretrained(
|
| 214 |
-
base_model_config,
|
| 215 |
-
trust_remote_code=True if cfg.trust_remote_code is True else False,
|
| 216 |
-
)
|
| 217 |
-
else:
|
| 218 |
-
tokenizer = getattr(transformers, tokenizer_type).from_pretrained(
|
| 219 |
-
base_model_config,
|
| 220 |
-
trust_remote_code=True if cfg.trust_remote_code is True else False,
|
| 221 |
-
)
|
| 222 |
-
except:
|
| 223 |
-
tokenizer = AutoTokenizer.from_pretrained(
|
| 224 |
-
base_model_config,
|
| 225 |
-
trust_remote_code=True if cfg.trust_remote_code is True else False,
|
| 226 |
-
)
|
| 227 |
-
|
| 228 |
-
logging.debug(f"EOS: {tokenizer.eos_token_id} / {tokenizer.eos_token}")
|
| 229 |
-
logging.debug(f"BOS: {tokenizer.bos_token_id} / {tokenizer.bos_token}")
|
| 230 |
-
logging.debug(f"PAD: {tokenizer.pad_token_id} / {tokenizer.pad_token}")
|
| 231 |
-
logging.debug(f"UNK: {tokenizer.unk_token_id} / {tokenizer.unk_token}")
|
| 232 |
-
|
| 233 |
-
if tokenizer.__class__.__name__ in ["LlamaTokenizer", "LlamaTokenizerFast"]:
|
| 234 |
-
tokenizer.pad_token = LLAMA_DEFAULT_PAD_TOKEN
|
| 235 |
-
|
| 236 |
-
if tokenizer.__class__.__name__ == "GPTNeoXTokenizerFast":
|
| 237 |
-
tokenizer.add_special_tokens({"pad_token": "[PAD]"})
|
| 238 |
-
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
| 239 |
-
|
| 240 |
-
if cfg.special_tokens:
|
| 241 |
-
for k, v in cfg.special_tokens.items():
|
| 242 |
-
tokenizer.add_special_tokens({k: v})
|
| 243 |
-
if cfg.tokens:
|
| 244 |
-
tokenizer.add_tokens(list(cfg.tokens))
|
| 245 |
-
|
| 246 |
embeddings_len = math.ceil(len(tokenizer) / 32) * 32
|
| 247 |
model.resize_token_embeddings(embeddings_len)
|
| 248 |
|
|
@@ -291,7 +290,7 @@ def load_model(
|
|
| 291 |
model.config.use_cache = False
|
| 292 |
|
| 293 |
# TODO resume_from_checkpoint handling
|
| 294 |
-
return model,
|
| 295 |
|
| 296 |
|
| 297 |
def load_adapter(model, cfg, adapter):
|
|
|
|
| 7 |
import bitsandbytes as bnb
|
| 8 |
import torch
|
| 9 |
import transformers
|
|
|
|
| 10 |
from transformers import (
|
| 11 |
AutoModelForCausalLM,
|
| 12 |
AutoTokenizer,
|
|
|
|
| 33 |
from transformers import PreTrainedTokenizer
|
| 34 |
|
| 35 |
|
| 36 |
+
def load_tokenizer(
|
| 37 |
+
base_model_config,
|
| 38 |
+
tokenizer_type,
|
| 39 |
+
cfg,
|
| 40 |
+
):
|
| 41 |
+
if tokenizer_type:
|
| 42 |
+
tokenizer = getattr(transformers, tokenizer_type).from_pretrained(
|
| 43 |
+
base_model_config,
|
| 44 |
+
trust_remote_code=True if cfg.trust_remote_code is True else False,
|
| 45 |
+
)
|
| 46 |
+
else:
|
| 47 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
| 48 |
+
base_model_config,
|
| 49 |
+
trust_remote_code=True if cfg.trust_remote_code is True else False,
|
| 50 |
+
)
|
| 51 |
+
|
| 52 |
+
logging.debug(f"EOS: {tokenizer.eos_token_id} / {tokenizer.eos_token}")
|
| 53 |
+
logging.debug(f"BOS: {tokenizer.bos_token_id} / {tokenizer.bos_token}")
|
| 54 |
+
logging.debug(f"PAD: {tokenizer.pad_token_id} / {tokenizer.pad_token}")
|
| 55 |
+
logging.debug(f"UNK: {tokenizer.unk_token_id} / {tokenizer.unk_token}")
|
| 56 |
+
|
| 57 |
+
if tokenizer.__class__.__name__ in ["LlamaTokenizer", "LlamaTokenizerFast"]:
|
| 58 |
+
tokenizer.pad_token = LLAMA_DEFAULT_PAD_TOKEN
|
| 59 |
+
|
| 60 |
+
if tokenizer.__class__.__name__ == "GPTNeoXTokenizerFast":
|
| 61 |
+
tokenizer.add_special_tokens({"pad_token": "[PAD]"})
|
| 62 |
+
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
| 63 |
+
|
| 64 |
+
if cfg.special_tokens:
|
| 65 |
+
for k, v in cfg.special_tokens.items():
|
| 66 |
+
tokenizer.add_special_tokens({k: v})
|
| 67 |
+
if cfg.tokens:
|
| 68 |
+
tokenizer.add_tokens(list(cfg.tokens))
|
| 69 |
+
|
| 70 |
+
return tokenizer
|
| 71 |
+
|
| 72 |
+
|
| 73 |
def load_model(
|
| 74 |
base_model,
|
| 75 |
base_model_config,
|
| 76 |
model_type,
|
| 77 |
+
tokenizer,
|
| 78 |
cfg,
|
| 79 |
adapter="lora",
|
| 80 |
inference=False,
|
| 81 |
):
|
| 82 |
+
# type: (str, str, str, str, AttrDefault, Optional[str], bool) -> Tuple[PreTrainedModel, Optional[PeftConfig]]
|
| 83 |
|
| 84 |
# TODO refactor as a kwarg
|
| 85 |
load_in_8bit = cfg.load_in_8bit
|
|
|
|
| 86 |
is_llama_derived_model = "llama" in base_model or (
|
| 87 |
cfg.model_type and "llama" in cfg.model_type.lower()
|
| 88 |
)
|
|
|
|
| 157 |
model_path = str(cache_model_path)
|
| 158 |
except:
|
| 159 |
model_path = cfg.base_model
|
| 160 |
+
model, _ = load_llama_model_4bit_low_ram(
|
| 161 |
base_model_config if base_model_config else base_model,
|
| 162 |
model_path,
|
| 163 |
device_map=cfg.device_map,
|
|
|
|
| 242 |
**model_kwargs,
|
| 243 |
)
|
| 244 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 245 |
embeddings_len = math.ceil(len(tokenizer) / 32) * 32
|
| 246 |
model.resize_token_embeddings(embeddings_len)
|
| 247 |
|
|
|
|
| 290 |
model.config.use_cache = False
|
| 291 |
|
| 292 |
# TODO resume_from_checkpoint handling
|
| 293 |
+
return model, lora_config
|
| 294 |
|
| 295 |
|
| 296 |
def load_adapter(model, cfg, adapter):
|