add utils.data.prepare_dataset
Browse files- scripts/finetune.py +3 -34
- src/axolotl/utils/data.py +35 -0
scripts/finetune.py
CHANGED
|
@@ -19,16 +19,11 @@ from transformers import GenerationConfig, TextStreamer
|
|
| 19 |
|
| 20 |
from axolotl.logging_config import configure_logging
|
| 21 |
from axolotl.utils.config import normalize_config, validate_config
|
| 22 |
-
from axolotl.utils.data import
|
| 23 |
from axolotl.utils.dict import DictDefault
|
| 24 |
-
from axolotl.utils.distributed import is_main_process, zero_first
|
| 25 |
from axolotl.utils.models import load_model, load_tokenizer
|
| 26 |
from axolotl.utils.tokenization import check_dataset_labels
|
| 27 |
-
from axolotl.utils.trainer import
|
| 28 |
-
calculate_total_num_steps,
|
| 29 |
-
process_datasets_for_packing,
|
| 30 |
-
setup_trainer,
|
| 31 |
-
)
|
| 32 |
from axolotl.utils.wandb import setup_wandb_env_vars
|
| 33 |
|
| 34 |
project_root = os.path.abspath(os.path.join(os.path.dirname(__file__), ".."))
|
|
@@ -39,7 +34,6 @@ configure_logging()
|
|
| 39 |
LOG = logging.getLogger("axolotl.scripts")
|
| 40 |
|
| 41 |
|
| 42 |
-
DEFAULT_DATASET_PREPARED_PATH = "last_run_prepared"
|
| 43 |
os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1"
|
| 44 |
|
| 45 |
|
|
@@ -183,32 +177,7 @@ def train(
|
|
| 183 |
if (
|
| 184 |
check_not_in(["shard", "merge_lora"], kwargs) and not cfg.inference
|
| 185 |
): # don't need to load dataset for these
|
| 186 |
-
|
| 187 |
-
train_dataset, eval_dataset = load_prepare_datasets(
|
| 188 |
-
tokenizer, cfg, DEFAULT_DATASET_PREPARED_PATH
|
| 189 |
-
)
|
| 190 |
-
else:
|
| 191 |
-
train_dataset = load_pretraining_dataset(
|
| 192 |
-
cfg.pretraining_dataset,
|
| 193 |
-
tokenizer,
|
| 194 |
-
max_tokens=cfg.sequence_len,
|
| 195 |
-
seed=cfg.seed or 42,
|
| 196 |
-
)
|
| 197 |
-
# https://discuss.huggingface.co/t/how-to-use-huggingface-trainer-streaming-datasets-without-wrapping-it-with-torchdatas-iterablewrapper/25230
|
| 198 |
-
train_dataset = train_dataset.with_format("torch")
|
| 199 |
-
eval_dataset = None
|
| 200 |
-
|
| 201 |
-
with zero_first(is_main_process()):
|
| 202 |
-
train_dataset, eval_dataset = process_datasets_for_packing(
|
| 203 |
-
cfg, train_dataset, eval_dataset
|
| 204 |
-
)
|
| 205 |
-
if cfg.max_steps:
|
| 206 |
-
total_num_steps = min(
|
| 207 |
-
calculate_total_num_steps(cfg, train_dataset, tokenizer), cfg.max_steps
|
| 208 |
-
)
|
| 209 |
-
LOG.info(f"Maximum number of steps set at {total_num_steps}")
|
| 210 |
-
else:
|
| 211 |
-
total_num_steps = calculate_total_num_steps(cfg, train_dataset, tokenizer)
|
| 212 |
|
| 213 |
if cfg.debug or "debug" in kwargs:
|
| 214 |
LOG.info("check_dataset_labels...")
|
|
|
|
| 19 |
|
| 20 |
from axolotl.logging_config import configure_logging
|
| 21 |
from axolotl.utils.config import normalize_config, validate_config
|
| 22 |
+
from axolotl.utils.data import prepare_dataset
|
| 23 |
from axolotl.utils.dict import DictDefault
|
|
|
|
| 24 |
from axolotl.utils.models import load_model, load_tokenizer
|
| 25 |
from axolotl.utils.tokenization import check_dataset_labels
|
| 26 |
+
from axolotl.utils.trainer import setup_trainer
|
|
|
|
|
|
|
|
|
|
|
|
|
| 27 |
from axolotl.utils.wandb import setup_wandb_env_vars
|
| 28 |
|
| 29 |
project_root = os.path.abspath(os.path.join(os.path.dirname(__file__), ".."))
|
|
|
|
| 34 |
LOG = logging.getLogger("axolotl.scripts")
|
| 35 |
|
| 36 |
|
|
|
|
| 37 |
os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1"
|
| 38 |
|
| 39 |
|
|
|
|
| 177 |
if (
|
| 178 |
check_not_in(["shard", "merge_lora"], kwargs) and not cfg.inference
|
| 179 |
): # don't need to load dataset for these
|
| 180 |
+
train_dataset, eval_dataset, total_num_steps = prepare_dataset(cfg, tokenizer)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 181 |
|
| 182 |
if cfg.debug or "debug" in kwargs:
|
| 183 |
LOG.info("check_dataset_labels...")
|
src/axolotl/utils/data.py
CHANGED
|
@@ -42,8 +42,43 @@ from axolotl.prompters import (
|
|
| 42 |
SummarizeTLDRPrompter,
|
| 43 |
)
|
| 44 |
from axolotl.utils.distributed import is_main_process, zero_first
|
|
|
|
|
|
|
|
|
|
|
|
|
| 45 |
|
| 46 |
LOG = logging.getLogger("axolotl")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 47 |
|
| 48 |
|
| 49 |
def load_tokenized_prepared_datasets(
|
|
|
|
| 42 |
SummarizeTLDRPrompter,
|
| 43 |
)
|
| 44 |
from axolotl.utils.distributed import is_main_process, zero_first
|
| 45 |
+
from axolotl.utils.trainer import (
|
| 46 |
+
calculate_total_num_steps,
|
| 47 |
+
process_datasets_for_packing,
|
| 48 |
+
)
|
| 49 |
|
| 50 |
LOG = logging.getLogger("axolotl")
|
| 51 |
+
DEFAULT_DATASET_PREPARED_PATH = "last_run_prepared"
|
| 52 |
+
|
| 53 |
+
|
| 54 |
+
def prepare_dataset(cfg, tokenizer):
|
| 55 |
+
if not cfg.pretraining_dataset:
|
| 56 |
+
train_dataset, eval_dataset = load_prepare_datasets(
|
| 57 |
+
tokenizer, cfg, DEFAULT_DATASET_PREPARED_PATH
|
| 58 |
+
)
|
| 59 |
+
else:
|
| 60 |
+
train_dataset = load_pretraining_dataset(
|
| 61 |
+
cfg.pretraining_dataset,
|
| 62 |
+
tokenizer,
|
| 63 |
+
max_tokens=cfg.sequence_len,
|
| 64 |
+
seed=cfg.seed or 42,
|
| 65 |
+
)
|
| 66 |
+
# https://discuss.huggingface.co/t/how-to-use-huggingface-trainer-streaming-datasets-without-wrapping-it-with-torchdatas-iterablewrapper/25230
|
| 67 |
+
train_dataset = train_dataset.with_format("torch")
|
| 68 |
+
eval_dataset = None
|
| 69 |
+
|
| 70 |
+
with zero_first(is_main_process()):
|
| 71 |
+
train_dataset, eval_dataset = process_datasets_for_packing(
|
| 72 |
+
cfg, train_dataset, eval_dataset
|
| 73 |
+
)
|
| 74 |
+
if cfg.max_steps:
|
| 75 |
+
total_num_steps = min(
|
| 76 |
+
calculate_total_num_steps(cfg, train_dataset, tokenizer), cfg.max_steps
|
| 77 |
+
)
|
| 78 |
+
LOG.info(f"Maximum number of steps set at {total_num_steps}")
|
| 79 |
+
else:
|
| 80 |
+
total_num_steps = calculate_total_num_steps(cfg, train_dataset, tokenizer)
|
| 81 |
+
return train_dataset, eval_dataset, total_num_steps
|
| 82 |
|
| 83 |
|
| 84 |
def load_tokenized_prepared_datasets(
|