pygmalion dataset prompts format, cached tokenized datasets should be hashed on the tokenizer too
Browse files
src/axolotl/prompt_strategies/alpaca_instruct.py
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from axolotl.prompt_tokenizers import AlpacaPromptTokenizingStrategy
|
| 2 |
+
from axolotl.prompters import AlpacaPrompter, PromptStyle
|
| 3 |
+
|
| 4 |
+
|
| 5 |
+
def load(tokenizer, cfg):
|
| 6 |
+
return AlpacaPromptTokenizingStrategy(
|
| 7 |
+
AlpacaPrompter(PromptStyle.instruct), tokenizer, cfg.train_on_inputs, cfg.sequence_len
|
| 8 |
+
)
|
src/axolotl/prompt_strategies/pygmalion.py
ADDED
|
@@ -0,0 +1,100 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import copy
|
| 2 |
+
import logging
|
| 3 |
+
from collections import defaultdict
|
| 4 |
+
from typing import Generator
|
| 5 |
+
|
| 6 |
+
from axolotl.prompt_tokenizers import PromptTokenizingStrategy
|
| 7 |
+
|
| 8 |
+
IGNORE_TOKEN_ID = -100
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
class PygmalionPromptTokenizingStrategy(PromptTokenizingStrategy):
|
| 12 |
+
bot_prefix_token_ids = []
|
| 13 |
+
|
| 14 |
+
def __init__(self, prompter, tokenizer, *args, **kwargs):
|
| 15 |
+
super().__init__(prompter, tokenizer)
|
| 16 |
+
res = self._tokenize("<|model|>", add_eos_token=False, strip_bos_token=True)
|
| 17 |
+
self.bot_prefix_token_ids = res["input_ids"]
|
| 18 |
+
|
| 19 |
+
def tokenize_prompt(self, prompt):
|
| 20 |
+
result = {
|
| 21 |
+
"input_ids": [],
|
| 22 |
+
"attention_mask": [],
|
| 23 |
+
"labels": [],
|
| 24 |
+
}
|
| 25 |
+
current_len = 0
|
| 26 |
+
for i, part in enumerate(self.prompter.build_prompt(prompt["conversations"])):
|
| 27 |
+
role, message = part
|
| 28 |
+
if role == "system":
|
| 29 |
+
prefix = "<|system|>"
|
| 30 |
+
# this should include a bos token, no eos token, strip trailing "\n<START>"
|
| 31 |
+
if message.endswith("\n<START>"):
|
| 32 |
+
message = message[:-8]
|
| 33 |
+
res = self._tokenize(prefix + "Persona: " + message.strip(), add_eos_token=False, strip_bos_token=False)
|
| 34 |
+
# everything from this is masked out from the labels
|
| 35 |
+
labels = [ IGNORE_TOKEN_ID ] * len(res["input_ids"])
|
| 36 |
+
elif role == "human":
|
| 37 |
+
prefix = "<|user|>"
|
| 38 |
+
res = self._tokenize(prefix + " " + message.strip(), add_eos_token=False, strip_bos_token=True)
|
| 39 |
+
# everything from this is masked out from the labels
|
| 40 |
+
labels = [ IGNORE_TOKEN_ID ] * len(res["input_ids"])
|
| 41 |
+
elif role == "bot":
|
| 42 |
+
prefix = "<|model|>"
|
| 43 |
+
res = self._tokenize(prefix + " " + message.strip(), add_eos_token=True, strip_bos_token=True)
|
| 44 |
+
res["input_ids"] = [*self.bot_prefix_token_ids, *res["input_ids"]]
|
| 45 |
+
# mask out the prefix token, rest is not masked out from labels
|
| 46 |
+
labels = [ IGNORE_TOKEN_ID ] * len(self.bot_prefix_token_ids) + [*copy.deepcopy(res["input_ids"])]
|
| 47 |
+
else:
|
| 48 |
+
logging.warning(f"unknown role in conversation: {role}")
|
| 49 |
+
res = defaultdict(lambda: [])
|
| 50 |
+
input_ids = res["input_ids"]
|
| 51 |
+
input_len = len(input_ids)
|
| 52 |
+
result["input_ids"][current_len : current_len + input_len] = input_ids
|
| 53 |
+
result["attention_mask"][current_len : current_len + input_len] = [
|
| 54 |
+
1 if x != self.tokenizer.pad_token_id else 0
|
| 55 |
+
for x in input_ids
|
| 56 |
+
]
|
| 57 |
+
result["labels"][current_len : current_len + input_len] = labels
|
| 58 |
+
current_len += input_len
|
| 59 |
+
return result
|
| 60 |
+
|
| 61 |
+
def _tokenize(self, prompt, add_eos_token=True, strip_bos_token=False):
|
| 62 |
+
result = self.tokenizer(
|
| 63 |
+
prompt,
|
| 64 |
+
truncation=True,
|
| 65 |
+
max_length=self.sequence_len,
|
| 66 |
+
padding=False,
|
| 67 |
+
return_tensors=None,
|
| 68 |
+
)
|
| 69 |
+
if (
|
| 70 |
+
result["input_ids"][-1] != self.tokenizer.eos_token_id
|
| 71 |
+
and len(result["input_ids"]) < self.sequence_len
|
| 72 |
+
and add_eos_token
|
| 73 |
+
):
|
| 74 |
+
result["input_ids"].append(self.tokenizer.eos_token_id)
|
| 75 |
+
result["attention_mask"].append(1)
|
| 76 |
+
|
| 77 |
+
if (
|
| 78 |
+
result["input_ids"][0] == self.tokenizer.bos_token_id
|
| 79 |
+
and strip_bos_token
|
| 80 |
+
):
|
| 81 |
+
result["input_ids"] = result["input_ids"][1:]
|
| 82 |
+
result["attention_mask"] = result["attention_mask"][1:]
|
| 83 |
+
|
| 84 |
+
result["labels"] = result["input_ids"].copy()
|
| 85 |
+
return result
|
| 86 |
+
|
| 87 |
+
|
| 88 |
+
class PygmalionPrompter:
|
| 89 |
+
def __init__(self, *args, **kwargs):
|
| 90 |
+
pass
|
| 91 |
+
|
| 92 |
+
def build_prompt(self, source, *args, **kwargs) -> Generator[str, None, None]:
|
| 93 |
+
for msg in source:
|
| 94 |
+
yield msg["role"], msg["value"]
|
| 95 |
+
|
| 96 |
+
|
| 97 |
+
def load(tokenizer, cfg):
|
| 98 |
+
return PygmalionPromptTokenizingStrategy(
|
| 99 |
+
PygmalionPrompter(), tokenizer, cfg.train_on_inputs, cfg.sequence_len
|
| 100 |
+
)
|
src/axolotl/utils/data.py
CHANGED
|
@@ -10,6 +10,7 @@ from datasets import (
|
|
| 10 |
concatenate_datasets,
|
| 11 |
)
|
| 12 |
from huggingface_hub import hf_hub_download
|
|
|
|
| 13 |
|
| 14 |
from axolotl.datasets import TokenizedPromptDataset, ConstantLengthDataset
|
| 15 |
from axolotl.prompt_strategies import load
|
|
@@ -37,12 +38,14 @@ from axolotl.prompters import (
|
|
| 37 |
|
| 38 |
|
| 39 |
def load_tokenized_prepared_datasets(tokenizer, cfg, default_dataset_prepared_path):
|
|
|
|
| 40 |
ds_hash = str(
|
| 41 |
md5(
|
| 42 |
(
|
| 43 |
str(cfg.sequence_len)
|
| 44 |
+ "@"
|
| 45 |
+ "|".join(sorted([f"{d.path}:{d.type}" for d in cfg.datasets]))
|
|
|
|
| 46 |
).encode("utf-8")
|
| 47 |
).hexdigest()
|
| 48 |
)
|
|
@@ -192,7 +195,7 @@ def load_tokenized_prepared_datasets(tokenizer, cfg, default_dataset_prepared_pa
|
|
| 192 |
return dataset
|
| 193 |
|
| 194 |
|
| 195 |
-
def load_prepare_datasets(tokenizer, cfg, default_dataset_prepared_path):
|
| 196 |
max_packed_sequence_len = (
|
| 197 |
cfg.max_packed_sequence_len if cfg.max_packed_sequence_len else cfg.sequence_len
|
| 198 |
)
|
|
@@ -200,6 +203,7 @@ def load_prepare_datasets(tokenizer, cfg, default_dataset_prepared_path):
|
|
| 200 |
max_packed_sequence_len, cfg.sequence_len
|
| 201 |
) # make sure we don't accidentally set it larger than sequence_len
|
| 202 |
|
|
|
|
| 203 |
if cfg.max_packed_sequence_len is not None:
|
| 204 |
# see if we can go ahead and load the stacked dataset
|
| 205 |
seed = f"@{str(cfg.seed)}" if cfg.seed else ""
|
|
@@ -211,6 +215,7 @@ def load_prepare_datasets(tokenizer, cfg, default_dataset_prepared_path):
|
|
| 211 |
+ str(max_packed_sequence_len)
|
| 212 |
+ seed
|
| 213 |
+ "|".join(sorted([f"{d.path}:{d.type}" for d in cfg.datasets]))
|
|
|
|
| 214 |
).encode("utf-8")
|
| 215 |
).hexdigest()
|
| 216 |
)
|
|
@@ -238,6 +243,11 @@ def load_prepare_datasets(tokenizer, cfg, default_dataset_prepared_path):
|
|
| 238 |
)
|
| 239 |
dataset = load_from_disk(str(prepared_ds_path))
|
| 240 |
logging.info("Prepared packed dataset loaded from disk...")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 241 |
else:
|
| 242 |
dataset = load_tokenized_prepared_datasets(
|
| 243 |
tokenizer, cfg, default_dataset_prepared_path
|
|
|
|
| 10 |
concatenate_datasets,
|
| 11 |
)
|
| 12 |
from huggingface_hub import hf_hub_download
|
| 13 |
+
from transformers import PreTrainedTokenizerBase
|
| 14 |
|
| 15 |
from axolotl.datasets import TokenizedPromptDataset, ConstantLengthDataset
|
| 16 |
from axolotl.prompt_strategies import load
|
|
|
|
| 38 |
|
| 39 |
|
| 40 |
def load_tokenized_prepared_datasets(tokenizer, cfg, default_dataset_prepared_path):
|
| 41 |
+
tokenizer_name = tokenizer.__class__.__name__
|
| 42 |
ds_hash = str(
|
| 43 |
md5(
|
| 44 |
(
|
| 45 |
str(cfg.sequence_len)
|
| 46 |
+ "@"
|
| 47 |
+ "|".join(sorted([f"{d.path}:{d.type}" for d in cfg.datasets]))
|
| 48 |
+
+ "|" + tokenizer_name
|
| 49 |
).encode("utf-8")
|
| 50 |
).hexdigest()
|
| 51 |
)
|
|
|
|
| 195 |
return dataset
|
| 196 |
|
| 197 |
|
| 198 |
+
def load_prepare_datasets(tokenizer: PreTrainedTokenizerBase, cfg, default_dataset_prepared_path):
|
| 199 |
max_packed_sequence_len = (
|
| 200 |
cfg.max_packed_sequence_len if cfg.max_packed_sequence_len else cfg.sequence_len
|
| 201 |
)
|
|
|
|
| 203 |
max_packed_sequence_len, cfg.sequence_len
|
| 204 |
) # make sure we don't accidentally set it larger than sequence_len
|
| 205 |
|
| 206 |
+
tokenizer_name = tokenizer.__class__.__name__
|
| 207 |
if cfg.max_packed_sequence_len is not None:
|
| 208 |
# see if we can go ahead and load the stacked dataset
|
| 209 |
seed = f"@{str(cfg.seed)}" if cfg.seed else ""
|
|
|
|
| 215 |
+ str(max_packed_sequence_len)
|
| 216 |
+ seed
|
| 217 |
+ "|".join(sorted([f"{d.path}:{d.type}" for d in cfg.datasets]))
|
| 218 |
+
+ "|" + tokenizer_name
|
| 219 |
).encode("utf-8")
|
| 220 |
).hexdigest()
|
| 221 |
)
|
|
|
|
| 243 |
)
|
| 244 |
dataset = load_from_disk(str(prepared_ds_path))
|
| 245 |
logging.info("Prepared packed dataset loaded from disk...")
|
| 246 |
+
if cfg.push_dataset_to_hub:
|
| 247 |
+
logging.info(
|
| 248 |
+
f"Saving packed prepared dataset with push_to_hub... {cfg.push_dataset_to_hub}/{ds_hash}"
|
| 249 |
+
)
|
| 250 |
+
dataset.push_to_hub(f"{cfg.push_dataset_to_hub}/{ds_hash}", private=True)
|
| 251 |
else:
|
| 252 |
dataset = load_tokenized_prepared_datasets(
|
| 253 |
tokenizer, cfg, default_dataset_prepared_path
|