Implement fused modules (#747)
Browse files* MLP: Memory saving
* Remove RMSNorm restrictions
* Map packed weights to original
* FusedAttention module
* Simplify code
* Move fused modules
* Fix critical typo
* Split inplace
* Add FFT config
* Add validation of fused arguments
* Add fused arguments to config
* Update docs
* Fix validation logic
* Add fused modules to flash attn
* Only fuse during training
* Remove timing
* Formatting
* Formatting
* Formatting
* chore: lint
* chore: lint
* add e2e tests for fused llama
* no lora for tests
---------
Co-authored-by: Wing Lian <[email protected]>
- README.md +2 -0
 - examples/llama-2/README.md +7 -3
 - examples/llama-2/fft_optimized.yml +73 -0
 - src/axolotl/monkeypatch/fused_modules.py +0 -0
 - src/axolotl/monkeypatch/llama_attn_hijack_flash.py +123 -5
 - src/axolotl/monkeypatch/utils.py +13 -0
 - src/axolotl/train.py +6 -4
 - src/axolotl/utils/config.py +9 -0
 - src/axolotl/utils/models.py +14 -0
 - tests/e2e/test_fused_llama.py +117 -0
 
    	
        README.md
    CHANGED
    
    | 
         @@ -684,6 +684,8 @@ xformers_attention: 
     | 
|
| 684 | 
         
             
            flash_attention:
         
     | 
| 685 | 
         
             
            flash_attn_cross_entropy:  # Whether to use flash-attention cross entropy implementation - advanced use only
         
     | 
| 686 | 
         
             
            flash_attn_rms_norm:  # Whether to use flash-attention rms norm implementation - advanced use only
         
     | 
| 
         | 
|
| 
         | 
|
| 687 | 
         
             
            # Whether to use scaled-dot-product attention
         
     | 
| 688 | 
         
             
            # https://pytorch.org/docs/stable/generated/torch.nn.functional.scaled_dot_product_attention.html
         
     | 
| 689 | 
         
             
            sdp_attention:
         
     | 
| 
         | 
|
| 684 | 
         
             
            flash_attention:
         
     | 
| 685 | 
         
             
            flash_attn_cross_entropy:  # Whether to use flash-attention cross entropy implementation - advanced use only
         
     | 
| 686 | 
         
             
            flash_attn_rms_norm:  # Whether to use flash-attention rms norm implementation - advanced use only
         
     | 
| 687 | 
         
            +
            flash_attn_fuse_qkv: # Whether to fuse QKV into a single operation
         
     | 
| 688 | 
         
            +
            flash_attn_fuse_mlp: # Whether to fuse part of the MLP into a single operation
         
     | 
| 689 | 
         
             
            # Whether to use scaled-dot-product attention
         
     | 
| 690 | 
         
             
            # https://pytorch.org/docs/stable/generated/torch.nn.functional.scaled_dot_product_attention.html
         
     | 
| 691 | 
         
             
            sdp_attention:
         
     | 
    	
        examples/llama-2/README.md
    CHANGED
    
    | 
         @@ -9,12 +9,16 @@ gradient_accumulation_steps: 2 
     | 
|
| 9 | 
         
             
            micro_batch_size: 1
         
     | 
| 10 | 
         | 
| 11 | 
         
             
            ```shell
         
     | 
| 12 | 
         
            -
            accelerate launch  
     | 
| 13 | 
         
            -
             
     | 
| 14 | 
         
             
            ```
         
     | 
| 15 | 
         
             
            or
         
     | 
| 16 | 
         | 
| 17 | 
         
             
            ```shell
         
     | 
| 18 | 
         
            -
            accelerate launch  
     | 
| 
         | 
|
| 19 | 
         | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 20 | 
         
             
            ```
         
     | 
| 
         | 
|
| 9 | 
         
             
            micro_batch_size: 1
         
     | 
| 10 | 
         | 
| 11 | 
         
             
            ```shell
         
     | 
| 12 | 
         
            +
            accelerate launch -m axolotl.cli.train examples/llama-2/qlora.yml
         
     | 
| 
         | 
|
| 13 | 
         
             
            ```
         
     | 
| 14 | 
         
             
            or
         
     | 
| 15 | 
         | 
| 16 | 
         
             
            ```shell
         
     | 
| 17 | 
         
            +
            accelerate launch -m axolotl.cli.train examples/llama-2/lora.yml
         
     | 
| 18 | 
         
            +
            ```
         
     | 
| 19 | 
         | 
| 20 | 
         
            +
            To launch a full finetuning with 16-bit precision:
         
     | 
| 21 | 
         
            +
             
     | 
| 22 | 
         
            +
            ```shell
         
     | 
| 23 | 
         
            +
            accelerate launch -m axolotl.cli.train examples/llama-2/fft_optimized.yml
         
     | 
| 24 | 
         
             
            ```
         
     | 
    	
        examples/llama-2/fft_optimized.yml
    ADDED
    
    | 
         @@ -0,0 +1,73 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            base_model: NousResearch/Llama-2-7b-hf
         
     | 
| 2 | 
         
            +
            base_model_config: NousResearch/Llama-2-7b-hf
         
     | 
| 3 | 
         
            +
            model_type: LlamaForCausalLM
         
     | 
| 4 | 
         
            +
            tokenizer_type: LlamaTokenizer
         
     | 
| 5 | 
         
            +
            is_llama_derived_model: true
         
     | 
| 6 | 
         
            +
             
     | 
| 7 | 
         
            +
            load_in_8bit: false
         
     | 
| 8 | 
         
            +
            load_in_4bit: false
         
     | 
| 9 | 
         
            +
            strict: false
         
     | 
| 10 | 
         
            +
             
     | 
| 11 | 
         
            +
            datasets:
         
     | 
| 12 | 
         
            +
              - path: mhenrichsen/alpaca_2k_test
         
     | 
| 13 | 
         
            +
                type: alpaca
         
     | 
| 14 | 
         
            +
            dataset_prepared_path: last_run_prepared
         
     | 
| 15 | 
         
            +
            val_set_size: 0.01
         
     | 
| 16 | 
         
            +
            output_dir: ./out
         
     | 
| 17 | 
         
            +
             
     | 
| 18 | 
         
            +
            sequence_len: 4096
         
     | 
| 19 | 
         
            +
            sample_packing: true
         
     | 
| 20 | 
         
            +
            pad_to_sequence_len: true
         
     | 
| 21 | 
         
            +
             
     | 
| 22 | 
         
            +
            adapter:
         
     | 
| 23 | 
         
            +
            lora_model_dir:
         
     | 
| 24 | 
         
            +
            lora_r:
         
     | 
| 25 | 
         
            +
            lora_alpha:
         
     | 
| 26 | 
         
            +
            lora_dropout:
         
     | 
| 27 | 
         
            +
            lora_target_linear:
         
     | 
| 28 | 
         
            +
            lora_fan_in_fan_out:
         
     | 
| 29 | 
         
            +
             
     | 
| 30 | 
         
            +
            wandb_project:
         
     | 
| 31 | 
         
            +
            wandb_entity:
         
     | 
| 32 | 
         
            +
            wandb_watch:
         
     | 
| 33 | 
         
            +
            wandb_run_id:
         
     | 
| 34 | 
         
            +
            wandb_log_model:
         
     | 
| 35 | 
         
            +
             
     | 
| 36 | 
         
            +
            gradient_accumulation_steps: 1
         
     | 
| 37 | 
         
            +
            micro_batch_size: 1
         
     | 
| 38 | 
         
            +
            num_epochs: 1
         
     | 
| 39 | 
         
            +
            optimizer: adamw_bnb_8bit
         
     | 
| 40 | 
         
            +
            lr_scheduler: cosine
         
     | 
| 41 | 
         
            +
            learning_rate: 0.0002
         
     | 
| 42 | 
         
            +
             
     | 
| 43 | 
         
            +
            train_on_inputs: false
         
     | 
| 44 | 
         
            +
            group_by_length: false
         
     | 
| 45 | 
         
            +
            bf16: true
         
     | 
| 46 | 
         
            +
            fp16: false
         
     | 
| 47 | 
         
            +
            tf32: false
         
     | 
| 48 | 
         
            +
             
     | 
| 49 | 
         
            +
            gradient_checkpointing: true
         
     | 
| 50 | 
         
            +
            early_stopping_patience:
         
     | 
| 51 | 
         
            +
            resume_from_checkpoint:
         
     | 
| 52 | 
         
            +
            local_rank:
         
     | 
| 53 | 
         
            +
            logging_steps: 1
         
     | 
| 54 | 
         
            +
            xformers_attention:
         
     | 
| 55 | 
         
            +
            flash_attention: true
         
     | 
| 56 | 
         
            +
            flash_attn_cross_entropy: false
         
     | 
| 57 | 
         
            +
            flash_attn_rms_norm: true
         
     | 
| 58 | 
         
            +
            flash_attn_fuse_qkv: false
         
     | 
| 59 | 
         
            +
            flash_attn_fuse_mlp: true
         
     | 
| 60 | 
         
            +
             
     | 
| 61 | 
         
            +
            warmup_steps: 100
         
     | 
| 62 | 
         
            +
            eval_steps: 0.05
         
     | 
| 63 | 
         
            +
            eval_table_size:
         
     | 
| 64 | 
         
            +
            save_steps:
         
     | 
| 65 | 
         
            +
            debug:
         
     | 
| 66 | 
         
            +
            deepspeed: #deepspeed/zero2.json # multi-gpu only
         
     | 
| 67 | 
         
            +
            weight_decay: 0.1
         
     | 
| 68 | 
         
            +
            fsdp:
         
     | 
| 69 | 
         
            +
            fsdp_config:
         
     | 
| 70 | 
         
            +
            special_tokens:
         
     | 
| 71 | 
         
            +
              bos_token: "<s>"
         
     | 
| 72 | 
         
            +
              eos_token: "</s>"
         
     | 
| 73 | 
         
            +
              unk_token: "<unk>"
         
     | 
    	
        src/axolotl/monkeypatch/fused_modules.py
    ADDED
    
    | 
         
            File without changes
         
     | 
    	
        src/axolotl/monkeypatch/llama_attn_hijack_flash.py
    CHANGED
    
    | 
         @@ -13,12 +13,18 @@ import transformers 
     | 
|
| 13 | 
         
             
            from einops import rearrange
         
     | 
| 14 | 
         
             
            from flash_attn.bert_padding import pad_input, unpad_input
         
     | 
| 15 | 
         
             
            from transformers.modeling_outputs import BaseModelOutputWithPast
         
     | 
| 
         | 
|
| 16 | 
         
             
            from transformers.models.llama.modeling_llama import (
         
     | 
| 17 | 
         
             
                LlamaDecoderLayer as OriginalLlamaDecoderLayer,
         
     | 
| 18 | 
         
             
            )
         
     | 
| 19 | 
         
            -
            from transformers.models.llama.modeling_llama import  
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 20 | 
         | 
| 21 | 
         
            -
            from axolotl.monkeypatch.utils import get_cu_seqlens_from_pos_ids
         
     | 
| 22 | 
         | 
| 23 | 
         
             
            try:
         
     | 
| 24 | 
         
             
                from flash_attn.flash_attn_interface import (  # pylint: disable=ungrouped-imports
         
     | 
| 
         @@ -38,6 +44,28 @@ except ImportError: 
     | 
|
| 38 | 
         
             
            LOG = logging.getLogger("axolotl")
         
     | 
| 39 | 
         | 
| 40 | 
         | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 41 | 
         
             
            def replace_llama_attn_with_flash_attn(
         
     | 
| 42 | 
         
             
                packed: Optional[bool] = False,
         
     | 
| 43 | 
         
             
                cross_entropy: Optional[bool] = False,
         
     | 
| 
         @@ -86,6 +114,91 @@ def replace_llama_attn_with_flash_attn( 
     | 
|
| 86 | 
         
             
                        )
         
     | 
| 87 | 
         | 
| 88 | 
         | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 89 | 
         
             
            # Disable the transformation of the attention mask in LlamaModel as the flash attention
         
     | 
| 90 | 
         
             
            # requires the attention mask to be the same as the key_padding_mask
         
     | 
| 91 | 
         
             
            def _prepare_decoder_attention_mask(
         
     | 
| 
         @@ -147,9 +260,14 @@ def flashattn_forward( 
     | 
|
| 147 | 
         
             
                    value_states = torch.cat(value_states, dim=-1)
         
     | 
| 148 | 
         | 
| 149 | 
         
             
                else:
         
     | 
| 150 | 
         
            -
                     
     | 
| 151 | 
         
            -
             
     | 
| 152 | 
         
            -
             
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 153 | 
         | 
| 154 | 
         
             
                query_states = query_states.view(
         
     | 
| 155 | 
         
             
                    bsz, q_len, self.num_heads, self.head_dim
         
     | 
| 
         | 
|
| 13 | 
         
             
            from einops import rearrange
         
     | 
| 14 | 
         
             
            from flash_attn.bert_padding import pad_input, unpad_input
         
     | 
| 15 | 
         
             
            from transformers.modeling_outputs import BaseModelOutputWithPast
         
     | 
| 16 | 
         
            +
            from transformers.models.llama.modeling_llama import LlamaAttention
         
     | 
| 17 | 
         
             
            from transformers.models.llama.modeling_llama import (
         
     | 
| 18 | 
         
             
                LlamaDecoderLayer as OriginalLlamaDecoderLayer,
         
     | 
| 19 | 
         
             
            )
         
     | 
| 20 | 
         
            +
            from transformers.models.llama.modeling_llama import (
         
     | 
| 21 | 
         
            +
                LlamaMLP,
         
     | 
| 22 | 
         
            +
                apply_rotary_pos_emb,
         
     | 
| 23 | 
         
            +
                repeat_kv,
         
     | 
| 24 | 
         
            +
            )
         
     | 
| 25 | 
         
            +
            from xformers.ops import SwiGLU
         
     | 
| 26 | 
         | 
| 27 | 
         
            +
            from axolotl.monkeypatch.utils import get_cu_seqlens_from_pos_ids, set_module_name
         
     | 
| 28 | 
         | 
| 29 | 
         
             
            try:
         
     | 
| 30 | 
         
             
                from flash_attn.flash_attn_interface import (  # pylint: disable=ungrouped-imports
         
     | 
| 
         | 
|
| 44 | 
         
             
            LOG = logging.getLogger("axolotl")
         
     | 
| 45 | 
         | 
| 46 | 
         | 
| 47 | 
         
            +
            def replace_llama_mlp_with_swiglu(model):
         
     | 
| 48 | 
         
            +
                for name, module in model.named_modules():
         
     | 
| 49 | 
         
            +
                    if isinstance(module, LlamaMLP):
         
     | 
| 50 | 
         
            +
                        mlp = FusedMLP(
         
     | 
| 51 | 
         
            +
                            module.config, module.gate_proj, module.up_proj, module.down_proj
         
     | 
| 52 | 
         
            +
                        )
         
     | 
| 53 | 
         
            +
                        set_module_name(model, name, mlp)
         
     | 
| 54 | 
         
            +
             
     | 
| 55 | 
         
            +
             
     | 
| 56 | 
         
            +
            def replace_llama_qkv_with_fused(model):
         
     | 
| 57 | 
         
            +
                for name, module in model.named_modules():
         
     | 
| 58 | 
         
            +
                    if isinstance(module, LlamaAttention):
         
     | 
| 59 | 
         
            +
                        qkv = FusedAttention(
         
     | 
| 60 | 
         
            +
                            module.config,
         
     | 
| 61 | 
         
            +
                            module.q_proj,
         
     | 
| 62 | 
         
            +
                            module.k_proj,
         
     | 
| 63 | 
         
            +
                            module.v_proj,
         
     | 
| 64 | 
         
            +
                            module.o_proj,
         
     | 
| 65 | 
         
            +
                        )
         
     | 
| 66 | 
         
            +
                        set_module_name(model, name, qkv)
         
     | 
| 67 | 
         
            +
             
     | 
| 68 | 
         
            +
             
     | 
| 69 | 
         
             
            def replace_llama_attn_with_flash_attn(
         
     | 
| 70 | 
         
             
                packed: Optional[bool] = False,
         
     | 
| 71 | 
         
             
                cross_entropy: Optional[bool] = False,
         
     | 
| 
         | 
|
| 114 | 
         
             
                        )
         
     | 
| 115 | 
         | 
| 116 | 
         | 
| 117 | 
         
            +
            class FusedAttention(LlamaAttention):
         
     | 
| 118 | 
         
            +
                """
         
     | 
| 119 | 
         
            +
                Fused QKV Attention layer for incrementally improved training efficiency
         
     | 
| 120 | 
         
            +
                """
         
     | 
| 121 | 
         
            +
             
     | 
| 122 | 
         
            +
                def __init__(
         
     | 
| 123 | 
         
            +
                    self,
         
     | 
| 124 | 
         
            +
                    config,
         
     | 
| 125 | 
         
            +
                    q: torch.nn.Linear,  # pylint: disable=invalid-name
         
     | 
| 126 | 
         
            +
                    k: torch.nn.Linear,  # pylint: disable=invalid-name
         
     | 
| 127 | 
         
            +
                    v: torch.nn.Linear,  # pylint: disable=invalid-name
         
     | 
| 128 | 
         
            +
                    o: torch.nn.Linear,  # pylint: disable=invalid-name
         
     | 
| 129 | 
         
            +
                ):
         
     | 
| 130 | 
         
            +
                    super().__init__(config)
         
     | 
| 131 | 
         
            +
                    self.config = config
         
     | 
| 132 | 
         
            +
                    self.init_device = next(iter(q.state_dict().values())).device
         
     | 
| 133 | 
         
            +
             
     | 
| 134 | 
         
            +
                    # define equivalent fused qkv projection
         
     | 
| 135 | 
         
            +
                    self.out_features: List[int] = [q.out_features, k.out_features, v.out_features]
         
     | 
| 136 | 
         
            +
                    self.qkv_proj = torch.nn.Linear(
         
     | 
| 137 | 
         
            +
                        q.in_features, sum(self.out_features), device=self.init_device, bias=False
         
     | 
| 138 | 
         
            +
                    )
         
     | 
| 139 | 
         
            +
                    self.o_proj = o
         
     | 
| 140 | 
         
            +
             
     | 
| 141 | 
         
            +
                    # overwrite initialized weights with pretrained weights
         
     | 
| 142 | 
         
            +
                    self.qkv_proj.weight.data = torch.cat(
         
     | 
| 143 | 
         
            +
                        (q.weight.data, k.weight.data, v.weight.data), dim=0
         
     | 
| 144 | 
         
            +
                    )
         
     | 
| 145 | 
         
            +
             
     | 
| 146 | 
         
            +
                def _post_training(self, model, name):
         
     | 
| 147 | 
         
            +
                    q_proj, k_proj, v_proj = torch.split(
         
     | 
| 148 | 
         
            +
                        self.qkv_proj.weight.data, self.out_features, dim=0
         
     | 
| 149 | 
         
            +
                    )
         
     | 
| 150 | 
         
            +
             
     | 
| 151 | 
         
            +
                    new_attn = LlamaAttention(self.config)
         
     | 
| 152 | 
         
            +
                    new_attn.q_proj.weight.data = q_proj
         
     | 
| 153 | 
         
            +
                    new_attn.k_proj.weight.data = k_proj
         
     | 
| 154 | 
         
            +
                    new_attn.v_proj.weight.data = v_proj
         
     | 
| 155 | 
         
            +
             
     | 
| 156 | 
         
            +
                    set_module_name(model, name, new_attn)
         
     | 
| 157 | 
         
            +
             
     | 
| 158 | 
         
            +
             
     | 
| 159 | 
         
            +
            class FusedMLP(torch.nn.Module):
         
     | 
| 160 | 
         
            +
                """
         
     | 
| 161 | 
         
            +
                Fused MLP layer for incrementally improved training efficiency
         
     | 
| 162 | 
         
            +
                """
         
     | 
| 163 | 
         
            +
             
     | 
| 164 | 
         
            +
                def __init__(
         
     | 
| 165 | 
         
            +
                    self,
         
     | 
| 166 | 
         
            +
                    config,
         
     | 
| 167 | 
         
            +
                    gate_proj: torch.nn.Linear,
         
     | 
| 168 | 
         
            +
                    up_proj: torch.nn.Linear,
         
     | 
| 169 | 
         
            +
                    down_proj: torch.nn.Linear,
         
     | 
| 170 | 
         
            +
                ):
         
     | 
| 171 | 
         
            +
                    super().__init__()
         
     | 
| 172 | 
         
            +
                    self.config = config
         
     | 
| 173 | 
         
            +
                    self.swiglu = SwiGLU(
         
     | 
| 174 | 
         
            +
                        in_features=config.hidden_size,
         
     | 
| 175 | 
         
            +
                        hidden_features=config.intermediate_size,
         
     | 
| 176 | 
         
            +
                        bias=False,
         
     | 
| 177 | 
         
            +
                        _pack_weights=True,
         
     | 
| 178 | 
         
            +
                    )
         
     | 
| 179 | 
         
            +
                    # overwrite initialized weights with pretrained weights
         
     | 
| 180 | 
         
            +
                    self.swiglu.w12.weight.data = torch.cat(
         
     | 
| 181 | 
         
            +
                        (gate_proj.weight.data, up_proj.weight.data), dim=0
         
     | 
| 182 | 
         
            +
                    )
         
     | 
| 183 | 
         
            +
                    self.swiglu.w3.weight.data = down_proj.weight.data
         
     | 
| 184 | 
         
            +
             
     | 
| 185 | 
         
            +
                def _post_training(self, model, name):
         
     | 
| 186 | 
         
            +
                    w1, w2 = torch.split(  # pylint: disable=invalid-name
         
     | 
| 187 | 
         
            +
                        self.swiglu.w12.weight.data, self.config.intermediate_size, dim=0
         
     | 
| 188 | 
         
            +
                    )
         
     | 
| 189 | 
         
            +
             
     | 
| 190 | 
         
            +
                    # Assign the split weights back to the original layers
         
     | 
| 191 | 
         
            +
                    new_mlp = LlamaMLP(self.config)
         
     | 
| 192 | 
         
            +
                    new_mlp.gate_proj.weight.data = w1
         
     | 
| 193 | 
         
            +
                    new_mlp.up_proj.weight.data = w2
         
     | 
| 194 | 
         
            +
                    new_mlp.down_proj.weight.data = self.swiglu.w3.weight.data
         
     | 
| 195 | 
         
            +
             
     | 
| 196 | 
         
            +
                    set_module_name(model, name, new_mlp)
         
     | 
| 197 | 
         
            +
             
     | 
| 198 | 
         
            +
                def forward(self, x: torch.Tensor) -> torch.Tensor:  # pylint: disable=invalid-name
         
     | 
| 199 | 
         
            +
                    return self.swiglu(x)
         
     | 
| 200 | 
         
            +
             
     | 
| 201 | 
         
            +
             
     | 
| 202 | 
         
             
            # Disable the transformation of the attention mask in LlamaModel as the flash attention
         
     | 
| 203 | 
         
             
            # requires the attention mask to be the same as the key_padding_mask
         
     | 
| 204 | 
         
             
            def _prepare_decoder_attention_mask(
         
     | 
| 
         | 
|
| 260 | 
         
             
                    value_states = torch.cat(value_states, dim=-1)
         
     | 
| 261 | 
         | 
| 262 | 
         
             
                else:
         
     | 
| 263 | 
         
            +
                    if isinstance(self, FusedAttention):
         
     | 
| 264 | 
         
            +
                        query_states, key_states, value_states = self.qkv_proj(hidden_states).split(
         
     | 
| 265 | 
         
            +
                            self.out_features, dim=-1
         
     | 
| 266 | 
         
            +
                        )
         
     | 
| 267 | 
         
            +
                    else:
         
     | 
| 268 | 
         
            +
                        query_states = self.q_proj(hidden_states)
         
     | 
| 269 | 
         
            +
                        key_states = self.k_proj(hidden_states)
         
     | 
| 270 | 
         
            +
                        value_states = self.v_proj(hidden_states)
         
     | 
| 271 | 
         | 
| 272 | 
         
             
                query_states = query_states.view(
         
     | 
| 273 | 
         
             
                    bsz, q_len, self.num_heads, self.head_dim
         
     | 
    	
        src/axolotl/monkeypatch/utils.py
    CHANGED
    
    | 
         @@ -101,3 +101,16 @@ def get_cu_seqlens_from_pos_ids(position_ids): 
     | 
|
| 101 | 
         
             
                    max_seq_lens.append(max_seq_len)
         
     | 
| 102 | 
         | 
| 103 | 
         
             
                return torch.stack(results).to(dtype=torch.int32), torch.stack(max_seq_lens)
         
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 101 | 
         
             
                    max_seq_lens.append(max_seq_len)
         
     | 
| 102 | 
         | 
| 103 | 
         
             
                return torch.stack(results).to(dtype=torch.int32), torch.stack(max_seq_lens)
         
     | 
| 104 | 
         
            +
             
     | 
| 105 | 
         
            +
             
     | 
| 106 | 
         
            +
            def set_module_name(model, name, value):
         
     | 
| 107 | 
         
            +
                if "." in name:
         
     | 
| 108 | 
         
            +
                    parent_name = name.rsplit(".", 1)[0]
         
     | 
| 109 | 
         
            +
                    child_name = name[len(parent_name) + 1 :]
         
     | 
| 110 | 
         
            +
                    parent = model.get_submodule(parent_name)
         
     | 
| 111 | 
         
            +
                else:
         
     | 
| 112 | 
         
            +
                    parent_name = ""
         
     | 
| 113 | 
         
            +
                    parent = model
         
     | 
| 114 | 
         
            +
                    child_name = name
         
     | 
| 115 | 
         
            +
             
     | 
| 116 | 
         
            +
                setattr(parent, child_name, value)
         
     | 
    	
        src/axolotl/train.py
    CHANGED
    
    | 
         @@ -40,10 +40,7 @@ class TrainDatasetMeta: 
     | 
|
| 40 | 
         | 
| 41 | 
         | 
| 42 | 
         
             
            def train(
         
     | 
| 43 | 
         
            -
                *,
         
     | 
| 44 | 
         
            -
                cfg: DictDefault,
         
     | 
| 45 | 
         
            -
                cli_args: TrainerCliArgs,
         
     | 
| 46 | 
         
            -
                dataset_meta: TrainDatasetMeta,
         
     | 
| 47 | 
         
             
            ):
         
     | 
| 48 | 
         
             
                # load the tokenizer first
         
     | 
| 49 | 
         
             
                LOG.info(f"loading tokenizer... {cfg.tokenizer_config or cfg.base_model_config}")
         
     | 
| 
         @@ -120,6 +117,11 @@ def train( 
     | 
|
| 120 | 
         | 
| 121 | 
         
             
                LOG.info(f"Training Completed!!! Saving pre-trained model to {cfg.output_dir}")
         
     | 
| 122 | 
         | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 123 | 
         
             
                if trainer.is_fsdp_enabled:
         
     | 
| 124 | 
         
             
                    trainer.accelerator.state.fsdp_plugin.set_state_dict_type("FULL_STATE_DICT")
         
     | 
| 125 | 
         
             
                    LOG.info("Set FSDP state dict type to FULL_STATE_DICT for saving.")
         
     | 
| 
         | 
|
| 40 | 
         | 
| 41 | 
         | 
| 42 | 
         
             
            def train(
         
     | 
| 43 | 
         
            +
                *, cfg: DictDefault, cli_args: TrainerCliArgs, dataset_meta: TrainDatasetMeta
         
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 44 | 
         
             
            ):
         
     | 
| 45 | 
         
             
                # load the tokenizer first
         
     | 
| 46 | 
         
             
                LOG.info(f"loading tokenizer... {cfg.tokenizer_config or cfg.base_model_config}")
         
     | 
| 
         | 
|
| 117 | 
         | 
| 118 | 
         
             
                LOG.info(f"Training Completed!!! Saving pre-trained model to {cfg.output_dir}")
         
     | 
| 119 | 
         | 
| 120 | 
         
            +
                # post training
         
     | 
| 121 | 
         
            +
                for name, module in model.named_modules():
         
     | 
| 122 | 
         
            +
                    if hasattr(module, "_post_training"):
         
     | 
| 123 | 
         
            +
                        module._post_training(model, name)  # pylint: disable=protected-access
         
     | 
| 124 | 
         
            +
             
     | 
| 125 | 
         
             
                if trainer.is_fsdp_enabled:
         
     | 
| 126 | 
         
             
                    trainer.accelerator.state.fsdp_plugin.set_state_dict_type("FULL_STATE_DICT")
         
     | 
| 127 | 
         
             
                    LOG.info("Set FSDP state dict type to FULL_STATE_DICT for saving.")
         
     | 
    	
        src/axolotl/utils/config.py
    CHANGED
    
    | 
         @@ -189,9 +189,15 @@ def validate_config(cfg): 
     | 
|
| 189 | 
         
             
                        if not cfg.load_in_4bit:
         
     | 
| 190 | 
         
             
                            raise ValueError("Require cfg.load_in_4bit to be True for qlora")
         
     | 
| 191 | 
         | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 192 | 
         
             
                if not cfg.load_in_8bit and cfg.adapter == "lora":
         
     | 
| 193 | 
         
             
                    LOG.warning("We recommend setting `load_in_8bit: true` for LORA finetuning")
         
     | 
| 194 | 
         | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 195 | 
         
             
                if cfg.relora_steps:
         
     | 
| 196 | 
         
             
                    if cfg.adapter not in ("lora", "qlora"):
         
     | 
| 197 | 
         
             
                        raise ValueError("cfg.adapter must be lora or qlora to use ReLoRA")
         
     | 
| 
         @@ -205,6 +211,9 @@ def validate_config(cfg): 
     | 
|
| 205 | 
         
             
                    if cfg.lr_scheduler == "one_cycle":
         
     | 
| 206 | 
         
             
                        raise ValueError("ReLoRA is not compatible with the one_cycle scheduler")
         
     | 
| 207 | 
         | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 208 | 
         
             
                if cfg.trust_remote_code:
         
     | 
| 209 | 
         
             
                    LOG.warning(
         
     | 
| 210 | 
         
             
                        "`trust_remote_code` is set to true. Please make sure that you reviewed the remote code/model."
         
     | 
| 
         | 
|
| 189 | 
         
             
                        if not cfg.load_in_4bit:
         
     | 
| 190 | 
         
             
                            raise ValueError("Require cfg.load_in_4bit to be True for qlora")
         
     | 
| 191 | 
         | 
| 192 | 
         
            +
                    if cfg.flash_attn_fuse_qkv or cfg.flash_attn_fuse_mlp:
         
     | 
| 193 | 
         
            +
                        raise ValueError("Fused modules are not supported with QLoRA")
         
     | 
| 194 | 
         
            +
             
     | 
| 195 | 
         
             
                if not cfg.load_in_8bit and cfg.adapter == "lora":
         
     | 
| 196 | 
         
             
                    LOG.warning("We recommend setting `load_in_8bit: true` for LORA finetuning")
         
     | 
| 197 | 
         | 
| 198 | 
         
            +
                if cfg.adapter == "lora" and (cfg.flash_attn_fuse_qkv or cfg.flash_attn_fuse_mlp):
         
     | 
| 199 | 
         
            +
                    raise ValueError("Fused modules are not supported with LoRA")
         
     | 
| 200 | 
         
            +
             
     | 
| 201 | 
         
             
                if cfg.relora_steps:
         
     | 
| 202 | 
         
             
                    if cfg.adapter not in ("lora", "qlora"):
         
     | 
| 203 | 
         
             
                        raise ValueError("cfg.adapter must be lora or qlora to use ReLoRA")
         
     | 
| 
         | 
|
| 211 | 
         
             
                    if cfg.lr_scheduler == "one_cycle":
         
     | 
| 212 | 
         
             
                        raise ValueError("ReLoRA is not compatible with the one_cycle scheduler")
         
     | 
| 213 | 
         | 
| 214 | 
         
            +
                    if cfg.flash_attn_fuse_qkv or cfg.flash_attn_fuse_mlp:
         
     | 
| 215 | 
         
            +
                        raise ValueError("Fused modules are not supported with ReLoRA")
         
     | 
| 216 | 
         
            +
             
     | 
| 217 | 
         
             
                if cfg.trust_remote_code:
         
     | 
| 218 | 
         
             
                    LOG.warning(
         
     | 
| 219 | 
         
             
                        "`trust_remote_code` is set to true. Please make sure that you reviewed the remote code/model."
         
     | 
    	
        src/axolotl/utils/models.py
    CHANGED
    
    | 
         @@ -272,6 +272,20 @@ def load_model( 
     | 
|
| 272 | 
         
             
                            load_in_4bit=cfg.load_in_4bit and cfg.adapter is not None,
         
     | 
| 273 | 
         
             
                            **model_kwargs,
         
     | 
| 274 | 
         
             
                        )
         
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 275 | 
         
             
                    # elif model_type == "GPTNeoXForCausalLM" and cfg.flash_attention:
         
     | 
| 276 | 
         
             
                    #     This is a WIP, still an issue with the backward pass
         
     | 
| 277 | 
         
             
                    #     RuntimeError: grad can be implicitly created only for scalar outputs
         
     | 
| 
         | 
|
| 272 | 
         
             
                            load_in_4bit=cfg.load_in_4bit and cfg.adapter is not None,
         
     | 
| 273 | 
         
             
                            **model_kwargs,
         
     | 
| 274 | 
         
             
                        )
         
     | 
| 275 | 
         
            +
             
     | 
| 276 | 
         
            +
                        if cfg.flash_attention and not inference:
         
     | 
| 277 | 
         
            +
                            from axolotl.monkeypatch.llama_attn_hijack_flash import (
         
     | 
| 278 | 
         
            +
                                replace_llama_mlp_with_swiglu,
         
     | 
| 279 | 
         
            +
                                replace_llama_qkv_with_fused,
         
     | 
| 280 | 
         
            +
                            )
         
     | 
| 281 | 
         
            +
             
     | 
| 282 | 
         
            +
                            if cfg.flash_attn_fuse_mlp:
         
     | 
| 283 | 
         
            +
                                LOG.info("patching with SwiGLU")
         
     | 
| 284 | 
         
            +
                                replace_llama_mlp_with_swiglu(model)
         
     | 
| 285 | 
         
            +
             
     | 
| 286 | 
         
            +
                            if cfg.flash_attn_fuse_qkv:
         
     | 
| 287 | 
         
            +
                                LOG.info("patching with fused QKV")
         
     | 
| 288 | 
         
            +
                                replace_llama_qkv_with_fused(model)
         
     | 
| 289 | 
         
             
                    # elif model_type == "GPTNeoXForCausalLM" and cfg.flash_attention:
         
     | 
| 290 | 
         
             
                    #     This is a WIP, still an issue with the backward pass
         
     | 
| 291 | 
         
             
                    #     RuntimeError: grad can be implicitly created only for scalar outputs
         
     | 
    	
        tests/e2e/test_fused_llama.py
    ADDED
    
    | 
         @@ -0,0 +1,117 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            """
         
     | 
| 2 | 
         
            +
            E2E tests for lora llama
         
     | 
| 3 | 
         
            +
            """
         
     | 
| 4 | 
         
            +
             
     | 
| 5 | 
         
            +
            import logging
         
     | 
| 6 | 
         
            +
            import os
         
     | 
| 7 | 
         
            +
            import tempfile
         
     | 
| 8 | 
         
            +
            import unittest
         
     | 
| 9 | 
         
            +
            from pathlib import Path
         
     | 
| 10 | 
         
            +
             
     | 
| 11 | 
         
            +
            from transformers.utils import is_torch_bf16_gpu_available
         
     | 
| 12 | 
         
            +
             
     | 
| 13 | 
         
            +
            from axolotl.cli import load_datasets
         
     | 
| 14 | 
         
            +
            from axolotl.common.cli import TrainerCliArgs
         
     | 
| 15 | 
         
            +
            from axolotl.train import train
         
     | 
| 16 | 
         
            +
            from axolotl.utils.config import normalize_config
         
     | 
| 17 | 
         
            +
            from axolotl.utils.dict import DictDefault
         
     | 
| 18 | 
         
            +
             
     | 
| 19 | 
         
            +
            LOG = logging.getLogger("axolotl.tests.e2e")
         
     | 
| 20 | 
         
            +
            os.environ["WANDB_DISABLED"] = "true"
         
     | 
| 21 | 
         
            +
             
     | 
| 22 | 
         
            +
             
     | 
| 23 | 
         
            +
            class TestFusedLlama(unittest.TestCase):
         
     | 
| 24 | 
         
            +
                """
         
     | 
| 25 | 
         
            +
                Test case for Llama models using Fused layers
         
     | 
| 26 | 
         
            +
                """
         
     | 
| 27 | 
         
            +
             
     | 
| 28 | 
         
            +
                def test_lora_packing(self):
         
     | 
| 29 | 
         
            +
                    # pylint: disable=duplicate-code
         
     | 
| 30 | 
         
            +
                    output_dir = tempfile.mkdtemp()
         
     | 
| 31 | 
         
            +
                    cfg = DictDefault(
         
     | 
| 32 | 
         
            +
                        {
         
     | 
| 33 | 
         
            +
                            "base_model": "JackFram/llama-68m",
         
     | 
| 34 | 
         
            +
                            "base_model_config": "JackFram/llama-68m",
         
     | 
| 35 | 
         
            +
                            "flash_attention": True,
         
     | 
| 36 | 
         
            +
                            "flash_attn_fuse_qkv": True,
         
     | 
| 37 | 
         
            +
                            "flash_attn_fuse_mlp": True,
         
     | 
| 38 | 
         
            +
                            "sample_packing": True,
         
     | 
| 39 | 
         
            +
                            "sequence_len": 1024,
         
     | 
| 40 | 
         
            +
                            "load_in_8bit": True,
         
     | 
| 41 | 
         
            +
                            "val_set_size": 0.1,
         
     | 
| 42 | 
         
            +
                            "special_tokens": {
         
     | 
| 43 | 
         
            +
                                "unk_token": "<unk>",
         
     | 
| 44 | 
         
            +
                                "bos_token": "<s>",
         
     | 
| 45 | 
         
            +
                                "eos_token": "</s>",
         
     | 
| 46 | 
         
            +
                            },
         
     | 
| 47 | 
         
            +
                            "datasets": [
         
     | 
| 48 | 
         
            +
                                {
         
     | 
| 49 | 
         
            +
                                    "path": "mhenrichsen/alpaca_2k_test",
         
     | 
| 50 | 
         
            +
                                    "type": "alpaca",
         
     | 
| 51 | 
         
            +
                                },
         
     | 
| 52 | 
         
            +
                            ],
         
     | 
| 53 | 
         
            +
                            "num_epochs": 2,
         
     | 
| 54 | 
         
            +
                            "micro_batch_size": 2,
         
     | 
| 55 | 
         
            +
                            "gradient_accumulation_steps": 1,
         
     | 
| 56 | 
         
            +
                            "output_dir": output_dir,
         
     | 
| 57 | 
         
            +
                            "learning_rate": 0.00001,
         
     | 
| 58 | 
         
            +
                            "optimizer": "adamw_torch",
         
     | 
| 59 | 
         
            +
                            "lr_scheduler": "cosine",
         
     | 
| 60 | 
         
            +
                            "max_steps": 20,
         
     | 
| 61 | 
         
            +
                            "save_steps": 10,
         
     | 
| 62 | 
         
            +
                            "eval_steps": 10,
         
     | 
| 63 | 
         
            +
                        }
         
     | 
| 64 | 
         
            +
                    )
         
     | 
| 65 | 
         
            +
                    normalize_config(cfg)
         
     | 
| 66 | 
         
            +
                    cli_args = TrainerCliArgs()
         
     | 
| 67 | 
         
            +
                    dataset_meta = load_datasets(cfg=cfg, cli_args=cli_args)
         
     | 
| 68 | 
         
            +
             
     | 
| 69 | 
         
            +
                    train(cfg=cfg, cli_args=cli_args, dataset_meta=dataset_meta)
         
     | 
| 70 | 
         
            +
                    assert (Path(output_dir) / "pytorch_model.bin").exists()
         
     | 
| 71 | 
         
            +
             
     | 
| 72 | 
         
            +
                def test_fft_packing(self):
         
     | 
| 73 | 
         
            +
                    # pylint: disable=duplicate-code
         
     | 
| 74 | 
         
            +
                    output_dir = tempfile.mkdtemp()
         
     | 
| 75 | 
         
            +
                    cfg = DictDefault(
         
     | 
| 76 | 
         
            +
                        {
         
     | 
| 77 | 
         
            +
                            "base_model": "JackFram/llama-68m",
         
     | 
| 78 | 
         
            +
                            "base_model_config": "JackFram/llama-68m",
         
     | 
| 79 | 
         
            +
                            "flash_attention": True,
         
     | 
| 80 | 
         
            +
                            "flash_attn_fuse_qkv": True,
         
     | 
| 81 | 
         
            +
                            "flash_attn_fuse_mlp": True,
         
     | 
| 82 | 
         
            +
                            "sample_packing": True,
         
     | 
| 83 | 
         
            +
                            "sequence_len": 1024,
         
     | 
| 84 | 
         
            +
                            "val_set_size": 0.1,
         
     | 
| 85 | 
         
            +
                            "special_tokens": {
         
     | 
| 86 | 
         
            +
                                "unk_token": "<unk>",
         
     | 
| 87 | 
         
            +
                                "bos_token": "<s>",
         
     | 
| 88 | 
         
            +
                                "eos_token": "</s>",
         
     | 
| 89 | 
         
            +
                            },
         
     | 
| 90 | 
         
            +
                            "datasets": [
         
     | 
| 91 | 
         
            +
                                {
         
     | 
| 92 | 
         
            +
                                    "path": "mhenrichsen/alpaca_2k_test",
         
     | 
| 93 | 
         
            +
                                    "type": "alpaca",
         
     | 
| 94 | 
         
            +
                                },
         
     | 
| 95 | 
         
            +
                            ],
         
     | 
| 96 | 
         
            +
                            "num_epochs": 2,
         
     | 
| 97 | 
         
            +
                            "micro_batch_size": 2,
         
     | 
| 98 | 
         
            +
                            "gradient_accumulation_steps": 1,
         
     | 
| 99 | 
         
            +
                            "output_dir": output_dir,
         
     | 
| 100 | 
         
            +
                            "learning_rate": 0.00001,
         
     | 
| 101 | 
         
            +
                            "optimizer": "adamw_torch",
         
     | 
| 102 | 
         
            +
                            "lr_scheduler": "cosine",
         
     | 
| 103 | 
         
            +
                            "max_steps": 20,
         
     | 
| 104 | 
         
            +
                            "save_steps": 10,
         
     | 
| 105 | 
         
            +
                            "eval_steps": 10,
         
     | 
| 106 | 
         
            +
                        }
         
     | 
| 107 | 
         
            +
                    )
         
     | 
| 108 | 
         
            +
                    if is_torch_bf16_gpu_available():
         
     | 
| 109 | 
         
            +
                        cfg.bf16 = True
         
     | 
| 110 | 
         
            +
                    else:
         
     | 
| 111 | 
         
            +
                        cfg.fp16 = True
         
     | 
| 112 | 
         
            +
                    normalize_config(cfg)
         
     | 
| 113 | 
         
            +
                    cli_args = TrainerCliArgs()
         
     | 
| 114 | 
         
            +
                    dataset_meta = load_datasets(cfg=cfg, cli_args=cli_args)
         
     | 
| 115 | 
         
            +
             
     | 
| 116 | 
         
            +
                    train(cfg=cfg, cli_args=cli_args, dataset_meta=dataset_meta)
         
     | 
| 117 | 
         
            +
                    assert (Path(output_dir) / "pytorch_model.bin").exists()
         
     |