misc fixes to add gptq tests (#621)
Browse files* misc fixes to add gptq tests
* set bf16 needed for fa2
- src/axolotl/utils/bench.py +5 -1
- src/axolotl/utils/models.py +23 -12
- src/axolotl/utils/trainer.py +1 -0
- tests/e2e/test_lora_llama.py +56 -2
- tests/e2e/test_phi.py +8 -6
src/axolotl/utils/bench.py
CHANGED
|
@@ -19,7 +19,11 @@ def check_cuda_device(default_value):
|
|
| 19 |
def wrapper(*args, **kwargs):
|
| 20 |
device = kwargs.get("device", args[0] if args else None)
|
| 21 |
|
| 22 |
-
if
|
|
|
|
|
|
|
|
|
|
|
|
|
| 23 |
return default_value
|
| 24 |
|
| 25 |
return func(*args, **kwargs)
|
|
|
|
| 19 |
def wrapper(*args, **kwargs):
|
| 20 |
device = kwargs.get("device", args[0] if args else None)
|
| 21 |
|
| 22 |
+
if (
|
| 23 |
+
not torch.cuda.is_available()
|
| 24 |
+
or device == "auto"
|
| 25 |
+
or torch.device(device).type == "cpu"
|
| 26 |
+
):
|
| 27 |
return default_value
|
| 28 |
|
| 29 |
return func(*args, **kwargs)
|
src/axolotl/utils/models.py
CHANGED
|
@@ -10,6 +10,7 @@ import torch
|
|
| 10 |
import transformers
|
| 11 |
from optimum.bettertransformer import BetterTransformer
|
| 12 |
from peft import PeftConfig, prepare_model_for_kbit_training
|
|
|
|
| 13 |
from transformers import ( # noqa: F401
|
| 14 |
AutoConfig,
|
| 15 |
AutoModelForCausalLM,
|
|
@@ -309,16 +310,26 @@ def load_model(
|
|
| 309 |
):
|
| 310 |
config.max_sequence_length = cfg.sequence_len
|
| 311 |
LOG.warning(f"increasing context length to {cfg.sequence_len}")
|
| 312 |
-
|
| 313 |
-
|
| 314 |
-
|
| 315 |
-
|
| 316 |
-
|
| 317 |
-
|
| 318 |
-
|
| 319 |
-
|
| 320 |
-
|
| 321 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 322 |
except Exception as err: # pylint: disable=broad-exception-caught
|
| 323 |
LOG.error(
|
| 324 |
"Exception raised attempting to load model, retrying with AutoModelForCausalLM"
|
|
@@ -466,10 +477,10 @@ def load_llama_adapter(model, cfg):
|
|
| 466 |
|
| 467 |
|
| 468 |
def find_all_linear_names(model):
|
| 469 |
-
cls = (bnb.nn.Linear4bit, bnb.nn.Linear8bitLt, torch.nn.Linear)
|
| 470 |
lora_module_names = set()
|
| 471 |
for name, module in model.named_modules():
|
| 472 |
-
if isinstance(module, cls):
|
| 473 |
names = name.split(".")
|
| 474 |
lora_module_names.add(names[0] if len(names) == 1 else names[-1])
|
| 475 |
|
|
|
|
| 10 |
import transformers
|
| 11 |
from optimum.bettertransformer import BetterTransformer
|
| 12 |
from peft import PeftConfig, prepare_model_for_kbit_training
|
| 13 |
+
from peft.tuners.lora import QuantLinear
|
| 14 |
from transformers import ( # noqa: F401
|
| 15 |
AutoConfig,
|
| 16 |
AutoModelForCausalLM,
|
|
|
|
| 310 |
):
|
| 311 |
config.max_sequence_length = cfg.sequence_len
|
| 312 |
LOG.warning(f"increasing context length to {cfg.sequence_len}")
|
| 313 |
+
if cfg.gptq:
|
| 314 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 315 |
+
base_model,
|
| 316 |
+
config=config,
|
| 317 |
+
device_map=cfg.device_map,
|
| 318 |
+
torch_dtype=cfg.torch_dtype,
|
| 319 |
+
trust_remote_code=cfg.trust_remote_code or False,
|
| 320 |
+
**model_kwargs,
|
| 321 |
+
)
|
| 322 |
+
else:
|
| 323 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 324 |
+
base_model,
|
| 325 |
+
config=config,
|
| 326 |
+
device_map=cfg.device_map,
|
| 327 |
+
load_in_8bit=cfg.load_in_8bit and cfg.adapter is not None,
|
| 328 |
+
load_in_4bit=cfg.load_in_4bit and cfg.adapter is not None,
|
| 329 |
+
torch_dtype=cfg.torch_dtype,
|
| 330 |
+
trust_remote_code=cfg.trust_remote_code or False,
|
| 331 |
+
**model_kwargs,
|
| 332 |
+
)
|
| 333 |
except Exception as err: # pylint: disable=broad-exception-caught
|
| 334 |
LOG.error(
|
| 335 |
"Exception raised attempting to load model, retrying with AutoModelForCausalLM"
|
|
|
|
| 477 |
|
| 478 |
|
| 479 |
def find_all_linear_names(model):
|
| 480 |
+
cls = (bnb.nn.Linear4bit, bnb.nn.Linear8bitLt, torch.nn.Linear, QuantLinear)
|
| 481 |
lora_module_names = set()
|
| 482 |
for name, module in model.named_modules():
|
| 483 |
+
if isinstance(module, cls) or "Linear" in module.__class__.__name__:
|
| 484 |
names = name.split(".")
|
| 485 |
lora_module_names.add(names[0] if len(names) == 1 else names[-1])
|
| 486 |
|
src/axolotl/utils/trainer.py
CHANGED
|
@@ -676,6 +676,7 @@ def setup_trainer(cfg, train_dataset, eval_dataset, model, tokenizer, total_num_
|
|
| 676 |
(cfg.load_best_model_at_end is not False or cfg.early_stopping_patience)
|
| 677 |
and cfg.val_set_size > 0
|
| 678 |
and cfg.save_steps
|
|
|
|
| 679 |
and cfg.save_steps % cfg.eval_steps == 0
|
| 680 |
)
|
| 681 |
or False,
|
|
|
|
| 676 |
(cfg.load_best_model_at_end is not False or cfg.early_stopping_patience)
|
| 677 |
and cfg.val_set_size > 0
|
| 678 |
and cfg.save_steps
|
| 679 |
+
and cfg.eval_steps
|
| 680 |
and cfg.save_steps % cfg.eval_steps == 0
|
| 681 |
)
|
| 682 |
or False,
|
tests/e2e/test_lora_llama.py
CHANGED
|
@@ -6,6 +6,7 @@ import logging
|
|
| 6 |
import os
|
| 7 |
import tempfile
|
| 8 |
import unittest
|
|
|
|
| 9 |
|
| 10 |
from axolotl.cli import load_datasets
|
| 11 |
from axolotl.common.cli import TrainerCliArgs
|
|
@@ -24,6 +25,7 @@ class TestLoraLlama(unittest.TestCase):
|
|
| 24 |
|
| 25 |
def test_lora(self):
|
| 26 |
# pylint: disable=duplicate-code
|
|
|
|
| 27 |
cfg = DictDefault(
|
| 28 |
{
|
| 29 |
"base_model": "JackFram/llama-68m",
|
|
@@ -51,7 +53,7 @@ class TestLoraLlama(unittest.TestCase):
|
|
| 51 |
"num_epochs": 2,
|
| 52 |
"micro_batch_size": 8,
|
| 53 |
"gradient_accumulation_steps": 1,
|
| 54 |
-
"output_dir":
|
| 55 |
"learning_rate": 0.00001,
|
| 56 |
"optimizer": "adamw_torch",
|
| 57 |
"lr_scheduler": "cosine",
|
|
@@ -62,9 +64,11 @@ class TestLoraLlama(unittest.TestCase):
|
|
| 62 |
dataset_meta = load_datasets(cfg=cfg, cli_args=cli_args)
|
| 63 |
|
| 64 |
train(cfg=cfg, cli_args=cli_args, dataset_meta=dataset_meta)
|
|
|
|
| 65 |
|
| 66 |
def test_lora_packing(self):
|
| 67 |
# pylint: disable=duplicate-code
|
|
|
|
| 68 |
cfg = DictDefault(
|
| 69 |
{
|
| 70 |
"base_model": "JackFram/llama-68m",
|
|
@@ -94,7 +98,7 @@ class TestLoraLlama(unittest.TestCase):
|
|
| 94 |
"num_epochs": 2,
|
| 95 |
"micro_batch_size": 8,
|
| 96 |
"gradient_accumulation_steps": 1,
|
| 97 |
-
"output_dir":
|
| 98 |
"learning_rate": 0.00001,
|
| 99 |
"optimizer": "adamw_torch",
|
| 100 |
"lr_scheduler": "cosine",
|
|
@@ -105,3 +109,53 @@ class TestLoraLlama(unittest.TestCase):
|
|
| 105 |
dataset_meta = load_datasets(cfg=cfg, cli_args=cli_args)
|
| 106 |
|
| 107 |
train(cfg=cfg, cli_args=cli_args, dataset_meta=dataset_meta)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 6 |
import os
|
| 7 |
import tempfile
|
| 8 |
import unittest
|
| 9 |
+
from pathlib import Path
|
| 10 |
|
| 11 |
from axolotl.cli import load_datasets
|
| 12 |
from axolotl.common.cli import TrainerCliArgs
|
|
|
|
| 25 |
|
| 26 |
def test_lora(self):
|
| 27 |
# pylint: disable=duplicate-code
|
| 28 |
+
output_dir = tempfile.mkdtemp()
|
| 29 |
cfg = DictDefault(
|
| 30 |
{
|
| 31 |
"base_model": "JackFram/llama-68m",
|
|
|
|
| 53 |
"num_epochs": 2,
|
| 54 |
"micro_batch_size": 8,
|
| 55 |
"gradient_accumulation_steps": 1,
|
| 56 |
+
"output_dir": output_dir,
|
| 57 |
"learning_rate": 0.00001,
|
| 58 |
"optimizer": "adamw_torch",
|
| 59 |
"lr_scheduler": "cosine",
|
|
|
|
| 64 |
dataset_meta = load_datasets(cfg=cfg, cli_args=cli_args)
|
| 65 |
|
| 66 |
train(cfg=cfg, cli_args=cli_args, dataset_meta=dataset_meta)
|
| 67 |
+
assert (Path(output_dir) / "adapter_model.bin").exists()
|
| 68 |
|
| 69 |
def test_lora_packing(self):
|
| 70 |
# pylint: disable=duplicate-code
|
| 71 |
+
output_dir = tempfile.mkdtemp()
|
| 72 |
cfg = DictDefault(
|
| 73 |
{
|
| 74 |
"base_model": "JackFram/llama-68m",
|
|
|
|
| 98 |
"num_epochs": 2,
|
| 99 |
"micro_batch_size": 8,
|
| 100 |
"gradient_accumulation_steps": 1,
|
| 101 |
+
"output_dir": output_dir,
|
| 102 |
"learning_rate": 0.00001,
|
| 103 |
"optimizer": "adamw_torch",
|
| 104 |
"lr_scheduler": "cosine",
|
|
|
|
| 109 |
dataset_meta = load_datasets(cfg=cfg, cli_args=cli_args)
|
| 110 |
|
| 111 |
train(cfg=cfg, cli_args=cli_args, dataset_meta=dataset_meta)
|
| 112 |
+
assert (Path(output_dir) / "adapter_model.bin").exists()
|
| 113 |
+
|
| 114 |
+
def test_lora_gptq(self):
|
| 115 |
+
# pylint: disable=duplicate-code
|
| 116 |
+
output_dir = tempfile.mkdtemp()
|
| 117 |
+
cfg = DictDefault(
|
| 118 |
+
{
|
| 119 |
+
"base_model": "TheBlokeAI/jackfram_llama-68m-GPTQ",
|
| 120 |
+
"base_model_config": "TheBlokeAI/jackfram_llama-68m-GPTQ",
|
| 121 |
+
"model_type": "AutoModelForCausalLM",
|
| 122 |
+
"tokenizer_type": "LlamaTokenizer",
|
| 123 |
+
"sequence_len": 1024,
|
| 124 |
+
"sample_packing": True,
|
| 125 |
+
"flash_attention": True,
|
| 126 |
+
"load_in_8bit": True,
|
| 127 |
+
"adapter": "lora",
|
| 128 |
+
"gptq": True,
|
| 129 |
+
"gptq_disable_exllama": True,
|
| 130 |
+
"lora_r": 32,
|
| 131 |
+
"lora_alpha": 64,
|
| 132 |
+
"lora_dropout": 0.05,
|
| 133 |
+
"lora_target_linear": True,
|
| 134 |
+
"val_set_size": 0.1,
|
| 135 |
+
"special_tokens": {
|
| 136 |
+
"unk_token": "<unk>",
|
| 137 |
+
"bos_token": "<s>",
|
| 138 |
+
"eos_token": "</s>",
|
| 139 |
+
},
|
| 140 |
+
"datasets": [
|
| 141 |
+
{
|
| 142 |
+
"path": "mhenrichsen/alpaca_2k_test",
|
| 143 |
+
"type": "alpaca",
|
| 144 |
+
},
|
| 145 |
+
],
|
| 146 |
+
"num_epochs": 2,
|
| 147 |
+
"save_steps": 0.5,
|
| 148 |
+
"micro_batch_size": 8,
|
| 149 |
+
"gradient_accumulation_steps": 1,
|
| 150 |
+
"output_dir": output_dir,
|
| 151 |
+
"learning_rate": 0.00001,
|
| 152 |
+
"optimizer": "adamw_torch",
|
| 153 |
+
"lr_scheduler": "cosine",
|
| 154 |
+
}
|
| 155 |
+
)
|
| 156 |
+
normalize_config(cfg)
|
| 157 |
+
cli_args = TrainerCliArgs()
|
| 158 |
+
dataset_meta = load_datasets(cfg=cfg, cli_args=cli_args)
|
| 159 |
+
|
| 160 |
+
train(cfg=cfg, cli_args=cli_args, dataset_meta=dataset_meta)
|
| 161 |
+
assert (Path(output_dir) / "adapter_model.bin").exists()
|
tests/e2e/test_phi.py
CHANGED
|
@@ -31,9 +31,9 @@ class TestPhi(unittest.TestCase):
|
|
| 31 |
"trust_remote_code": True,
|
| 32 |
"model_type": "MixFormerSequentialForCausalLM",
|
| 33 |
"tokenizer_type": "AutoTokenizer",
|
| 34 |
-
"sequence_len":
|
| 35 |
"sample_packing": False,
|
| 36 |
-
"load_in_8bit":
|
| 37 |
"adapter": None,
|
| 38 |
"val_set_size": 0.1,
|
| 39 |
"special_tokens": {
|
|
@@ -55,8 +55,9 @@ class TestPhi(unittest.TestCase):
|
|
| 55 |
"gradient_accumulation_steps": 1,
|
| 56 |
"output_dir": tempfile.mkdtemp(),
|
| 57 |
"learning_rate": 0.00001,
|
| 58 |
-
"optimizer": "
|
| 59 |
"lr_scheduler": "cosine",
|
|
|
|
| 60 |
}
|
| 61 |
)
|
| 62 |
normalize_config(cfg)
|
|
@@ -74,9 +75,9 @@ class TestPhi(unittest.TestCase):
|
|
| 74 |
"trust_remote_code": True,
|
| 75 |
"model_type": "MixFormerSequentialForCausalLM",
|
| 76 |
"tokenizer_type": "AutoTokenizer",
|
| 77 |
-
"sequence_len":
|
| 78 |
"sample_packing": True,
|
| 79 |
-
"load_in_8bit":
|
| 80 |
"adapter": None,
|
| 81 |
"val_set_size": 0.1,
|
| 82 |
"special_tokens": {
|
|
@@ -98,8 +99,9 @@ class TestPhi(unittest.TestCase):
|
|
| 98 |
"gradient_accumulation_steps": 1,
|
| 99 |
"output_dir": tempfile.mkdtemp(),
|
| 100 |
"learning_rate": 0.00001,
|
| 101 |
-
"optimizer": "
|
| 102 |
"lr_scheduler": "cosine",
|
|
|
|
| 103 |
}
|
| 104 |
)
|
| 105 |
normalize_config(cfg)
|
|
|
|
| 31 |
"trust_remote_code": True,
|
| 32 |
"model_type": "MixFormerSequentialForCausalLM",
|
| 33 |
"tokenizer_type": "AutoTokenizer",
|
| 34 |
+
"sequence_len": 512,
|
| 35 |
"sample_packing": False,
|
| 36 |
+
"load_in_8bit": False,
|
| 37 |
"adapter": None,
|
| 38 |
"val_set_size": 0.1,
|
| 39 |
"special_tokens": {
|
|
|
|
| 55 |
"gradient_accumulation_steps": 1,
|
| 56 |
"output_dir": tempfile.mkdtemp(),
|
| 57 |
"learning_rate": 0.00001,
|
| 58 |
+
"optimizer": "adamw_bnb_8bit",
|
| 59 |
"lr_scheduler": "cosine",
|
| 60 |
+
"bf16": True,
|
| 61 |
}
|
| 62 |
)
|
| 63 |
normalize_config(cfg)
|
|
|
|
| 75 |
"trust_remote_code": True,
|
| 76 |
"model_type": "MixFormerSequentialForCausalLM",
|
| 77 |
"tokenizer_type": "AutoTokenizer",
|
| 78 |
+
"sequence_len": 512,
|
| 79 |
"sample_packing": True,
|
| 80 |
+
"load_in_8bit": False,
|
| 81 |
"adapter": None,
|
| 82 |
"val_set_size": 0.1,
|
| 83 |
"special_tokens": {
|
|
|
|
| 99 |
"gradient_accumulation_steps": 1,
|
| 100 |
"output_dir": tempfile.mkdtemp(),
|
| 101 |
"learning_rate": 0.00001,
|
| 102 |
+
"optimizer": "adamw_bnb_8bit",
|
| 103 |
"lr_scheduler": "cosine",
|
| 104 |
+
"bf16": True,
|
| 105 |
}
|
| 106 |
)
|
| 107 |
normalize_config(cfg)
|