Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,155 +1,156 @@
|
|
| 1 |
-
import gradio as gr
|
| 2 |
-
import os
|
| 3 |
-
import sys
|
| 4 |
-
import argparse
|
| 5 |
-
import random
|
| 6 |
-
import time
|
| 7 |
-
from omegaconf import OmegaConf
|
| 8 |
-
import torch
|
| 9 |
-
import torchvision
|
| 10 |
-
from pytorch_lightning import seed_everything
|
| 11 |
-
from huggingface_hub import hf_hub_download
|
| 12 |
-
from einops import repeat
|
| 13 |
-
import torchvision.transforms as transforms
|
| 14 |
-
from utils.utils import instantiate_from_config
|
| 15 |
-
sys.path.insert(0, "scripts/evaluation")
|
| 16 |
-
from funcs import (
|
| 17 |
-
batch_ddim_sampling,
|
| 18 |
-
load_model_checkpoint,
|
| 19 |
-
get_latent_z,
|
| 20 |
-
save_videos
|
| 21 |
-
)
|
| 22 |
-
|
| 23 |
-
def download_model():
|
| 24 |
-
REPO_ID = 'Doubiiu/DynamiCrafter'
|
| 25 |
-
filename_list = ['model.ckpt']
|
| 26 |
-
if not os.path.exists('./checkpoints/dynamicrafter_256_v1/'):
|
| 27 |
-
os.makedirs('./checkpoints/dynamicrafter_256_v1/')
|
| 28 |
-
for filename in filename_list:
|
| 29 |
-
local_file = os.path.join('./checkpoints/dynamicrafter_256_v1/', filename)
|
| 30 |
-
if not os.path.exists(local_file):
|
| 31 |
-
hf_hub_download(repo_id=REPO_ID, filename=filename, local_dir='./checkpoints/dynamicrafter_256_v1/', force_download=True)
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
def infer(image, prompt, steps=50, cfg_scale=7.5, eta=1.0, fs=3, seed=123):
|
| 35 |
-
download_model()
|
| 36 |
-
ckpt_path='checkpoints/dynamicrafter_256_v1/model.ckpt'
|
| 37 |
-
config_file='configs/inference_256_v1.0.yaml'
|
| 38 |
-
config = OmegaConf.load(config_file)
|
| 39 |
-
model_config = config.pop("model", OmegaConf.create())
|
| 40 |
-
model_config['params']['unet_config']['params']['use_checkpoint']=False
|
| 41 |
-
model = instantiate_from_config(model_config)
|
| 42 |
-
assert os.path.exists(ckpt_path), "Error: checkpoint Not Found!"
|
| 43 |
-
model = load_model_checkpoint(model, ckpt_path)
|
| 44 |
-
model.eval()
|
| 45 |
-
model = model.cuda()
|
| 46 |
-
save_fps = 8
|
| 47 |
-
|
| 48 |
-
seed_everything(seed)
|
| 49 |
-
transform = transforms.Compose([
|
| 50 |
-
transforms.Resize(256),
|
| 51 |
-
transforms.CenterCrop(256),
|
| 52 |
-
])
|
| 53 |
-
torch.cuda.empty_cache()
|
| 54 |
-
print('start:', prompt, time.strftime('%Y-%m-%d %H:%M:%S',time.localtime(time.time())))
|
| 55 |
-
start = time.time()
|
| 56 |
-
if steps > 60:
|
| 57 |
-
steps = 60
|
| 58 |
-
|
| 59 |
-
batch_size=1
|
| 60 |
-
channels = model.model.diffusion_model.out_channels
|
| 61 |
-
frames = model.temporal_length
|
| 62 |
-
h, w = 256 // 8, 256 // 8
|
| 63 |
-
noise_shape = [batch_size, channels, frames, h, w]
|
| 64 |
-
|
| 65 |
-
# text cond
|
| 66 |
-
text_emb = model.get_learned_conditioning([prompt])
|
| 67 |
-
|
| 68 |
-
# img cond
|
| 69 |
-
img_tensor = torch.from_numpy(image).permute(2, 0, 1).float().to(model.device)
|
| 70 |
-
img_tensor = (img_tensor / 255. - 0.5) * 2
|
| 71 |
-
|
| 72 |
-
image_tensor_resized = transform(img_tensor) #3,256,256
|
| 73 |
-
videos = image_tensor_resized.unsqueeze(0) # bchw
|
| 74 |
-
|
| 75 |
-
z = get_latent_z(model, videos.unsqueeze(2)) #bc,1,hw
|
| 76 |
-
|
| 77 |
-
img_tensor_repeat = repeat(z, 'b c t h w -> b c (repeat t) h w', repeat=frames)
|
| 78 |
-
|
| 79 |
-
cond_images = model.embedder(img_tensor.unsqueeze(0)) ## blc
|
| 80 |
-
img_emb = model.image_proj_model(cond_images)
|
| 81 |
-
|
| 82 |
-
imtext_cond = torch.cat([text_emb, img_emb], dim=1)
|
| 83 |
-
|
| 84 |
-
fs = torch.tensor([fs], dtype=torch.long, device=model.device)
|
| 85 |
-
cond = {"c_crossattn": [imtext_cond], "fs": fs, "c_concat": [img_tensor_repeat]}
|
| 86 |
-
|
| 87 |
-
## inference
|
| 88 |
-
batch_samples = batch_ddim_sampling(model, cond, noise_shape, n_samples=1, ddim_steps=steps, ddim_eta=eta, cfg_scale=cfg_scale)
|
| 89 |
-
## b,samples,c,t,h,w
|
| 90 |
-
|
| 91 |
-
video_path = './output.mp4'
|
| 92 |
-
save_videos(batch_samples, './', filenames=['output'], fps=save_fps)
|
| 93 |
-
model = model.cpu()
|
| 94 |
-
return video_path
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
i2v_examples = [
|
| 102 |
-
['prompts/art.png', 'man fishing in a boat at sunset', 50, 7.5, 1.0, 3, 234],
|
| 103 |
-
['prompts/boy.png', 'boy walking on the street', 50, 7.5, 1.0, 3, 125],
|
| 104 |
-
['prompts/dance1.jpeg', 'two people dancing', 50, 7.5, 1.0, 3, 116],
|
| 105 |
-
['prompts/fire_and_beach.jpg', 'a campfire on the beach and the ocean waves in the background', 50, 7.5, 1.0, 3, 111],
|
| 106 |
-
['prompts/girl3.jpeg', 'girl talking and blinking', 50, 7.5, 1.0, 3, 111],
|
| 107 |
-
['prompts/guitar0.jpeg', 'bear playing guitar happily, snowing', 50, 7.5, 1.0, 3,
|
| 108 |
-
]
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
<
|
| 115 |
-
<a href='https://
|
| 116 |
-
<a href=''>
|
| 117 |
-
<a href='
|
| 118 |
-
<a href='https://
|
| 119 |
-
<a href='https://
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
<a style='font-size:18px;color: #000000' href='https://
|
| 123 |
-
<a style='font-size:18px;color: #000000' href='https://github.
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
with gr.
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
|
|
|
| 155 |
dynamicrafter_iface.queue(max_size=12).launch(show_api=True)
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import os
|
| 3 |
+
import sys
|
| 4 |
+
import argparse
|
| 5 |
+
import random
|
| 6 |
+
import time
|
| 7 |
+
from omegaconf import OmegaConf
|
| 8 |
+
import torch
|
| 9 |
+
import torchvision
|
| 10 |
+
from pytorch_lightning import seed_everything
|
| 11 |
+
from huggingface_hub import hf_hub_download
|
| 12 |
+
from einops import repeat
|
| 13 |
+
import torchvision.transforms as transforms
|
| 14 |
+
from utils.utils import instantiate_from_config
|
| 15 |
+
sys.path.insert(0, "scripts/evaluation")
|
| 16 |
+
from funcs import (
|
| 17 |
+
batch_ddim_sampling,
|
| 18 |
+
load_model_checkpoint,
|
| 19 |
+
get_latent_z,
|
| 20 |
+
save_videos
|
| 21 |
+
)
|
| 22 |
+
|
| 23 |
+
def download_model():
|
| 24 |
+
REPO_ID = 'Doubiiu/DynamiCrafter'
|
| 25 |
+
filename_list = ['model.ckpt']
|
| 26 |
+
if not os.path.exists('./checkpoints/dynamicrafter_256_v1/'):
|
| 27 |
+
os.makedirs('./checkpoints/dynamicrafter_256_v1/')
|
| 28 |
+
for filename in filename_list:
|
| 29 |
+
local_file = os.path.join('./checkpoints/dynamicrafter_256_v1/', filename)
|
| 30 |
+
if not os.path.exists(local_file):
|
| 31 |
+
hf_hub_download(repo_id=REPO_ID, filename=filename, local_dir='./checkpoints/dynamicrafter_256_v1/', force_download=True)
|
| 32 |
+
|
| 33 |
+
|
| 34 |
+
def infer(image, prompt, steps=50, cfg_scale=7.5, eta=1.0, fs=3, seed=123):
|
| 35 |
+
download_model()
|
| 36 |
+
ckpt_path='checkpoints/dynamicrafter_256_v1/model.ckpt'
|
| 37 |
+
config_file='configs/inference_256_v1.0.yaml'
|
| 38 |
+
config = OmegaConf.load(config_file)
|
| 39 |
+
model_config = config.pop("model", OmegaConf.create())
|
| 40 |
+
model_config['params']['unet_config']['params']['use_checkpoint']=False
|
| 41 |
+
model = instantiate_from_config(model_config)
|
| 42 |
+
assert os.path.exists(ckpt_path), "Error: checkpoint Not Found!"
|
| 43 |
+
model = load_model_checkpoint(model, ckpt_path)
|
| 44 |
+
model.eval()
|
| 45 |
+
model = model.cuda()
|
| 46 |
+
save_fps = 8
|
| 47 |
+
|
| 48 |
+
seed_everything(seed)
|
| 49 |
+
transform = transforms.Compose([
|
| 50 |
+
transforms.Resize(256),
|
| 51 |
+
transforms.CenterCrop(256),
|
| 52 |
+
])
|
| 53 |
+
torch.cuda.empty_cache()
|
| 54 |
+
print('start:', prompt, time.strftime('%Y-%m-%d %H:%M:%S',time.localtime(time.time())))
|
| 55 |
+
start = time.time()
|
| 56 |
+
if steps > 60:
|
| 57 |
+
steps = 60
|
| 58 |
+
|
| 59 |
+
batch_size=1
|
| 60 |
+
channels = model.model.diffusion_model.out_channels
|
| 61 |
+
frames = model.temporal_length
|
| 62 |
+
h, w = 256 // 8, 256 // 8
|
| 63 |
+
noise_shape = [batch_size, channels, frames, h, w]
|
| 64 |
+
|
| 65 |
+
# text cond
|
| 66 |
+
text_emb = model.get_learned_conditioning([prompt])
|
| 67 |
+
|
| 68 |
+
# img cond
|
| 69 |
+
img_tensor = torch.from_numpy(image).permute(2, 0, 1).float().to(model.device)
|
| 70 |
+
img_tensor = (img_tensor / 255. - 0.5) * 2
|
| 71 |
+
|
| 72 |
+
image_tensor_resized = transform(img_tensor) #3,256,256
|
| 73 |
+
videos = image_tensor_resized.unsqueeze(0) # bchw
|
| 74 |
+
|
| 75 |
+
z = get_latent_z(model, videos.unsqueeze(2)) #bc,1,hw
|
| 76 |
+
|
| 77 |
+
img_tensor_repeat = repeat(z, 'b c t h w -> b c (repeat t) h w', repeat=frames)
|
| 78 |
+
|
| 79 |
+
cond_images = model.embedder(img_tensor.unsqueeze(0)) ## blc
|
| 80 |
+
img_emb = model.image_proj_model(cond_images)
|
| 81 |
+
|
| 82 |
+
imtext_cond = torch.cat([text_emb, img_emb], dim=1)
|
| 83 |
+
|
| 84 |
+
fs = torch.tensor([fs], dtype=torch.long, device=model.device)
|
| 85 |
+
cond = {"c_crossattn": [imtext_cond], "fs": fs, "c_concat": [img_tensor_repeat]}
|
| 86 |
+
|
| 87 |
+
## inference
|
| 88 |
+
batch_samples = batch_ddim_sampling(model, cond, noise_shape, n_samples=1, ddim_steps=steps, ddim_eta=eta, cfg_scale=cfg_scale)
|
| 89 |
+
## b,samples,c,t,h,w
|
| 90 |
+
|
| 91 |
+
video_path = './output.mp4'
|
| 92 |
+
save_videos(batch_samples, './', filenames=['output'], fps=save_fps)
|
| 93 |
+
model = model.cpu()
|
| 94 |
+
return video_path
|
| 95 |
+
|
| 96 |
+
|
| 97 |
+
|
| 98 |
+
|
| 99 |
+
|
| 100 |
+
|
| 101 |
+
i2v_examples = [
|
| 102 |
+
['prompts/art.png', 'man fishing in a boat at sunset', 50, 7.5, 1.0, 3, 234],
|
| 103 |
+
['prompts/boy.png', 'boy walking on the street', 50, 7.5, 1.0, 3, 125],
|
| 104 |
+
['prompts/dance1.jpeg', 'two people dancing', 50, 7.5, 1.0, 3, 116],
|
| 105 |
+
['prompts/fire_and_beach.jpg', 'a campfire on the beach and the ocean waves in the background', 50, 7.5, 1.0, 3, 111],
|
| 106 |
+
['prompts/girl3.jpeg', 'girl talking and blinking', 50, 7.5, 1.0, 3, 111],
|
| 107 |
+
['prompts/guitar0.jpeg', 'bear playing guitar happily, snowing', 50, 7.5, 1.0, 3, 122],
|
| 108 |
+
['prompts/surf.png', 'a man is surfing', 50, 7.5, 1.0, 3, 123],
|
| 109 |
+
]
|
| 110 |
+
css = """#input_img {max-width: 256px !important} #output_vid {max-width: 256px; max-height: 256px}"""
|
| 111 |
+
|
| 112 |
+
with gr.Blocks(analytics_enabled=False, css=css) as dynamicrafter_iface:
|
| 113 |
+
gr.Markdown("<div align='center'> <h1> DynamiCrafter: Animating Open-domain Images with Video Diffusion Priors </span> </h1> \
|
| 114 |
+
<h2 style='font-weight: 450; font-size: 1rem; margin: 0rem'>\
|
| 115 |
+
<a href='https://doubiiu.github.io/'>Jinbo Xing</a>, \
|
| 116 |
+
<a href='https://menghanxia.github.io/'>Menghan Xia</a>, <a href='https://yzhang2016.github.io/'>Yong Zhang</a>, \
|
| 117 |
+
<a href=''>Haoxin Chen</a>, <a href=''> Wangbo Yu</a>,\
|
| 118 |
+
<a href='https://github.com/hyliu'>Hanyuan Liu</a>, <a href='https://xinntao.github.io/'>Xintao Wang</a>,\
|
| 119 |
+
<a href='https://www.cse.cuhk.edu.hk/~ttwong/myself.html'>Tien-Tsin Wong</a>,\
|
| 120 |
+
<a href='https://scholar.google.com/citations?user=4oXBp9UAAAAJ&hl=zh-CN'>Ying Shan</a>\
|
| 121 |
+
</h2> \
|
| 122 |
+
<a style='font-size:18px;color: #000000' href='https://arxiv.org/abs/2310.12190'> [ArXiv] </a>\
|
| 123 |
+
<a style='font-size:18px;color: #000000' href='https://doubiiu.github.io/projects/DynamiCrafter/'> [Project Page] </a> \
|
| 124 |
+
<a style='font-size:18px;color: #000000' href='https://github.com/Doubiiu/DynamiCrafter'> [Github] </a> </div>")
|
| 125 |
+
|
| 126 |
+
with gr.Tab(label='ImageAnimation'):
|
| 127 |
+
with gr.Column():
|
| 128 |
+
with gr.Row():
|
| 129 |
+
with gr.Column():
|
| 130 |
+
with gr.Row():
|
| 131 |
+
i2v_input_image = gr.Image(label="Input Image",elem_id="input_img")
|
| 132 |
+
with gr.Row():
|
| 133 |
+
i2v_input_text = gr.Text(label='Prompts')
|
| 134 |
+
with gr.Row():
|
| 135 |
+
i2v_seed = gr.Slider(label='Random Seed', minimum=0, maximum=10000, step=1, value=123)
|
| 136 |
+
i2v_eta = gr.Slider(minimum=0.0, maximum=1.0, step=0.1, label='ETA', value=1.0, elem_id="i2v_eta")
|
| 137 |
+
i2v_cfg_scale = gr.Slider(minimum=1.0, maximum=15.0, step=0.5, label='CFG Scale', value=7.5, elem_id="i2v_cfg_scale")
|
| 138 |
+
with gr.Row():
|
| 139 |
+
i2v_steps = gr.Slider(minimum=1, maximum=60, step=1, elem_id="i2v_steps", label="Sampling steps", value=50)
|
| 140 |
+
i2v_motion = gr.Slider(minimum=1, maximum=4, step=1, elem_id="i2v_motion", label="Motion magnitude", value=3)
|
| 141 |
+
i2v_end_btn = gr.Button("Generate")
|
| 142 |
+
# with gr.Tab(label='Result'):
|
| 143 |
+
with gr.Row():
|
| 144 |
+
i2v_output_video = gr.Video(label="Generated Video",elem_id="output_vid",autoplay=True,show_share_button=True)
|
| 145 |
+
|
| 146 |
+
gr.Examples(examples=i2v_examples,
|
| 147 |
+
inputs=[i2v_input_image, i2v_input_text, i2v_steps, i2v_cfg_scale, i2v_eta, i2v_motion, i2v_seed],
|
| 148 |
+
outputs=[i2v_output_video],
|
| 149 |
+
fn = infer,
|
| 150 |
+
)
|
| 151 |
+
i2v_end_btn.click(inputs=[i2v_input_image, i2v_input_text, i2v_steps, i2v_cfg_scale, i2v_eta, i2v_motion, i2v_seed],
|
| 152 |
+
outputs=[i2v_output_video],
|
| 153 |
+
fn = infer
|
| 154 |
+
)
|
| 155 |
+
|
| 156 |
dynamicrafter_iface.queue(max_size=12).launch(show_api=True)
|