Spaces:
Runtime error
Runtime error
liuyizhang
commited on
Commit
·
a71406a
1
Parent(s):
9403943
update files
Browse files- automatic_label_demo.py +18 -8
- gradio_app.py +65 -15
- gradio_auto_label.py +392 -0
- grounded_sam.ipynb +12 -3
- grounded_sam_inpainting_demo.py +10 -1
- grounded_sam_whisper_demo.py +258 -0
- grounded_dino_sam_inpainting_demo.py → grounded_sam_whisper_inpainting_demo.py +127 -124
automatic_label_demo.py
CHANGED
|
@@ -43,20 +43,23 @@ def load_image(image_path):
|
|
| 43 |
return image_pil, image
|
| 44 |
|
| 45 |
|
| 46 |
-
def generate_caption(raw_image):
|
| 47 |
# unconditional image captioning
|
| 48 |
-
|
|
|
|
|
|
|
|
|
|
| 49 |
out = blip_model.generate(**inputs)
|
| 50 |
caption = processor.decode(out[0], skip_special_tokens=True)
|
| 51 |
return caption
|
| 52 |
|
| 53 |
|
| 54 |
-
def generate_tags(caption, max_tokens=100, model="gpt-3.5-turbo"):
|
| 55 |
prompt = [
|
| 56 |
{
|
| 57 |
'role': 'system',
|
| 58 |
-
'content': '
|
| 59 |
-
'List the nouns in singular form. Split them by "
|
| 60 |
f'Caption: {caption}.'
|
| 61 |
}
|
| 62 |
]
|
|
@@ -197,6 +200,7 @@ if __name__ == "__main__":
|
|
| 197 |
"--sam_checkpoint", type=str, required=True, help="path to checkpoint file"
|
| 198 |
)
|
| 199 |
parser.add_argument("--input_image", type=str, required=True, help="path to image file")
|
|
|
|
| 200 |
parser.add_argument("--openai_key", type=str, required=True, help="key for chatgpt")
|
| 201 |
parser.add_argument("--openai_proxy", default=None, type=str, help="proxy for chatgpt")
|
| 202 |
parser.add_argument(
|
|
@@ -215,6 +219,7 @@ if __name__ == "__main__":
|
|
| 215 |
grounded_checkpoint = args.grounded_checkpoint # change the path of the model
|
| 216 |
sam_checkpoint = args.sam_checkpoint
|
| 217 |
image_path = args.input_image
|
|
|
|
| 218 |
openai_key = args.openai_key
|
| 219 |
openai_proxy = args.openai_proxy
|
| 220 |
output_dir = args.output_dir
|
|
@@ -242,9 +247,14 @@ if __name__ == "__main__":
|
|
| 242 |
# https://huggingface.co/spaces/xinyu1205/Tag2Text
|
| 243 |
# but there are some bugs...
|
| 244 |
processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-large")
|
| 245 |
-
|
| 246 |
-
|
| 247 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 248 |
print(f"Caption: {caption}")
|
| 249 |
print(f"Tags: {text_prompt}")
|
| 250 |
|
|
|
|
| 43 |
return image_pil, image
|
| 44 |
|
| 45 |
|
| 46 |
+
def generate_caption(raw_image, device):
|
| 47 |
# unconditional image captioning
|
| 48 |
+
if device == "cuda":
|
| 49 |
+
inputs = processor(raw_image, return_tensors="pt").to("cuda", torch.float16)
|
| 50 |
+
else:
|
| 51 |
+
inputs = processor(raw_image, return_tensors="pt")
|
| 52 |
out = blip_model.generate(**inputs)
|
| 53 |
caption = processor.decode(out[0], skip_special_tokens=True)
|
| 54 |
return caption
|
| 55 |
|
| 56 |
|
| 57 |
+
def generate_tags(caption, split=',', max_tokens=100, model="gpt-3.5-turbo"):
|
| 58 |
prompt = [
|
| 59 |
{
|
| 60 |
'role': 'system',
|
| 61 |
+
'content': 'Extract the unique nouns in the caption. Remove all the adjectives. ' + \
|
| 62 |
+
f'List the nouns in singular form. Split them by "{split} ". ' + \
|
| 63 |
f'Caption: {caption}.'
|
| 64 |
}
|
| 65 |
]
|
|
|
|
| 200 |
"--sam_checkpoint", type=str, required=True, help="path to checkpoint file"
|
| 201 |
)
|
| 202 |
parser.add_argument("--input_image", type=str, required=True, help="path to image file")
|
| 203 |
+
parser.add_argument("--split", default=",", type=str, help="split for text prompt")
|
| 204 |
parser.add_argument("--openai_key", type=str, required=True, help="key for chatgpt")
|
| 205 |
parser.add_argument("--openai_proxy", default=None, type=str, help="proxy for chatgpt")
|
| 206 |
parser.add_argument(
|
|
|
|
| 219 |
grounded_checkpoint = args.grounded_checkpoint # change the path of the model
|
| 220 |
sam_checkpoint = args.sam_checkpoint
|
| 221 |
image_path = args.input_image
|
| 222 |
+
split = args.split
|
| 223 |
openai_key = args.openai_key
|
| 224 |
openai_proxy = args.openai_proxy
|
| 225 |
output_dir = args.output_dir
|
|
|
|
| 247 |
# https://huggingface.co/spaces/xinyu1205/Tag2Text
|
| 248 |
# but there are some bugs...
|
| 249 |
processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-large")
|
| 250 |
+
if device == "cuda":
|
| 251 |
+
blip_model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-large", torch_dtype=torch.float16).to("cuda")
|
| 252 |
+
else:
|
| 253 |
+
blip_model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-large")
|
| 254 |
+
caption = generate_caption(image_pil, device=device)
|
| 255 |
+
# Currently ", " is better for detecting single tags
|
| 256 |
+
# while ". " is a little worse in some case
|
| 257 |
+
text_prompt = generate_tags(caption, split=split)
|
| 258 |
print(f"Caption: {caption}")
|
| 259 |
print(f"Tags: {text_prompt}")
|
| 260 |
|
gradio_app.py
CHANGED
|
@@ -1,11 +1,13 @@
|
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
|
| 3 |
import argparse
|
| 4 |
-
import os
|
| 5 |
import copy
|
| 6 |
|
| 7 |
import numpy as np
|
| 8 |
import torch
|
|
|
|
| 9 |
from PIL import Image, ImageDraw, ImageFont
|
| 10 |
|
| 11 |
# Grounding DINO
|
|
@@ -30,6 +32,10 @@ from io import BytesIO
|
|
| 30 |
from diffusers import StableDiffusionInpaintPipeline
|
| 31 |
from huggingface_hub import hf_hub_download
|
| 32 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 33 |
def load_model_hf(model_config_path, repo_id, filename, device='cpu'):
|
| 34 |
args = SLConfig.fromfile(model_config_path)
|
| 35 |
model = build_model(args)
|
|
@@ -42,6 +48,13 @@ def load_model_hf(model_config_path, repo_id, filename, device='cpu'):
|
|
| 42 |
_ = model.eval()
|
| 43 |
return model
|
| 44 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 45 |
def plot_boxes_to_image(image_pil, tgt):
|
| 46 |
H, W = tgt["size"]
|
| 47 |
boxes = tgt["boxes"]
|
|
@@ -135,14 +148,16 @@ def get_grounding_output(model, image, caption, box_threshold, text_threshold, w
|
|
| 135 |
tokenized = tokenlizer(caption)
|
| 136 |
# build pred
|
| 137 |
pred_phrases = []
|
|
|
|
| 138 |
for logit, box in zip(logits_filt, boxes_filt):
|
| 139 |
pred_phrase = get_phrases_from_posmap(logit > text_threshold, tokenized, tokenlizer)
|
| 140 |
if with_logits:
|
| 141 |
pred_phrases.append(pred_phrase + f"({str(logit.max().item())[:4]})")
|
| 142 |
else:
|
| 143 |
pred_phrases.append(pred_phrase)
|
|
|
|
| 144 |
|
| 145 |
-
return boxes_filt, pred_phrases
|
| 146 |
|
| 147 |
def show_mask(mask, ax, random_color=False):
|
| 148 |
if random_color:
|
|
@@ -164,12 +179,11 @@ def show_box(box, ax, label):
|
|
| 164 |
config_file = 'GroundingDINO/groundingdino/config/GroundingDINO_SwinT_OGC.py'
|
| 165 |
ckpt_repo_id = "ShilongLiu/GroundingDINO"
|
| 166 |
ckpt_filenmae = "groundingdino_swint_ogc.pth"
|
| 167 |
-
sam_checkpoint='
|
| 168 |
output_dir="outputs"
|
| 169 |
device="cuda"
|
| 170 |
|
| 171 |
-
def run_grounded_sam(image_path, text_prompt, task_type, inpaint_prompt, box_threshold, text_threshold):
|
| 172 |
-
assert text_prompt, 'text_prompt is not found!'
|
| 173 |
|
| 174 |
# make dir
|
| 175 |
os.makedirs(output_dir, exist_ok=True)
|
|
@@ -177,18 +191,29 @@ def run_grounded_sam(image_path, text_prompt, task_type, inpaint_prompt, box_thr
|
|
| 177 |
image_pil, image = load_image(image_path.convert("RGB"))
|
| 178 |
# load model
|
| 179 |
model = load_model_hf(config_file, ckpt_repo_id, ckpt_filenmae)
|
|
|
|
| 180 |
|
| 181 |
# visualize raw image
|
| 182 |
image_pil.save(os.path.join(output_dir, "raw_image.jpg"))
|
| 183 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 184 |
# run grounding dino model
|
| 185 |
-
boxes_filt, pred_phrases = get_grounding_output(
|
| 186 |
model, image, text_prompt, box_threshold, text_threshold, device=device
|
| 187 |
)
|
| 188 |
|
| 189 |
size = image_pil.size
|
| 190 |
|
| 191 |
-
if task_type == 'seg' or task_type == 'inpainting':
|
| 192 |
# initialize SAM
|
| 193 |
predictor = SamPredictor(build_sam(checkpoint=sam_checkpoint))
|
| 194 |
image = np.array(image_path)
|
|
@@ -201,6 +226,16 @@ def run_grounded_sam(image_path, text_prompt, task_type, inpaint_prompt, box_thr
|
|
| 201 |
boxes_filt[i][2:] += boxes_filt[i][:2]
|
| 202 |
|
| 203 |
boxes_filt = boxes_filt.cpu()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 204 |
transformed_boxes = predictor.transform.apply_boxes_torch(boxes_filt, image.shape[:2])
|
| 205 |
|
| 206 |
masks, _, _ = predictor.predict_torch(
|
|
@@ -224,7 +259,7 @@ def run_grounded_sam(image_path, text_prompt, task_type, inpaint_prompt, box_thr
|
|
| 224 |
image_with_box.save(image_path)
|
| 225 |
image_result = cv2.cvtColor(cv2.imread(image_path), cv2.COLOR_BGR2RGB)
|
| 226 |
return image_result
|
| 227 |
-
elif task_type == 'seg':
|
| 228 |
assert sam_checkpoint, 'sam_checkpoint is not found!'
|
| 229 |
|
| 230 |
# draw output image
|
|
@@ -234,6 +269,8 @@ def run_grounded_sam(image_path, text_prompt, task_type, inpaint_prompt, box_thr
|
|
| 234 |
show_mask(mask.cpu().numpy(), plt.gca(), random_color=True)
|
| 235 |
for box, label in zip(boxes_filt, pred_phrases):
|
| 236 |
show_box(box.numpy(), plt.gca(), label)
|
|
|
|
|
|
|
| 237 |
plt.axis('off')
|
| 238 |
image_path = os.path.join(output_dir, "grounding_dino_output.jpg")
|
| 239 |
plt.savefig(image_path, bbox_inches="tight")
|
|
@@ -242,16 +279,24 @@ def run_grounded_sam(image_path, text_prompt, task_type, inpaint_prompt, box_thr
|
|
| 242 |
elif task_type == 'inpainting':
|
| 243 |
assert inpaint_prompt, 'inpaint_prompt is not found!'
|
| 244 |
# inpainting pipeline
|
| 245 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 246 |
mask_pil = Image.fromarray(mask)
|
| 247 |
-
image_pil = Image.fromarray(image)
|
| 248 |
|
| 249 |
pipe = StableDiffusionInpaintPipeline.from_pretrained(
|
| 250 |
"runwayml/stable-diffusion-inpainting", torch_dtype=torch.float16
|
| 251 |
)
|
| 252 |
pipe = pipe.to("cuda")
|
| 253 |
|
|
|
|
|
|
|
|
|
|
| 254 |
image = pipe(prompt=inpaint_prompt, image=image_pil, mask_image=mask_pil).images[0]
|
|
|
|
|
|
|
| 255 |
image_path = os.path.join(output_dir, "grounded_sam_inpainting_output.jpg")
|
| 256 |
image.save(image_path)
|
| 257 |
image_result = cv2.cvtColor(cv2.imread(image_path), cv2.COLOR_BGR2RGB)
|
|
@@ -264,15 +309,16 @@ if __name__ == "__main__":
|
|
| 264 |
parser = argparse.ArgumentParser("Grounded SAM demo", add_help=True)
|
| 265 |
parser.add_argument("--debug", action="store_true", help="using debug mode")
|
| 266 |
parser.add_argument("--share", action="store_true", help="share the app")
|
|
|
|
| 267 |
args = parser.parse_args()
|
| 268 |
|
| 269 |
block = gr.Blocks().queue()
|
| 270 |
with block:
|
| 271 |
with gr.Row():
|
| 272 |
with gr.Column():
|
| 273 |
-
input_image = gr.Image(source='upload', type="pil")
|
| 274 |
-
|
| 275 |
-
|
| 276 |
inpaint_prompt = gr.Textbox(label="Inpaint Prompt")
|
| 277 |
run_button = gr.Button(label="Run")
|
| 278 |
with gr.Accordion("Advanced options", open=False):
|
|
@@ -282,6 +328,10 @@ if __name__ == "__main__":
|
|
| 282 |
text_threshold = gr.Slider(
|
| 283 |
label="Text Threshold", minimum=0.0, maximum=1.0, value=0.25, step=0.001
|
| 284 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 285 |
|
| 286 |
with gr.Column():
|
| 287 |
gallery = gr.outputs.Image(
|
|
@@ -289,7 +339,7 @@ if __name__ == "__main__":
|
|
| 289 |
).style(full_width=True, full_height=True)
|
| 290 |
|
| 291 |
run_button.click(fn=run_grounded_sam, inputs=[
|
| 292 |
-
input_image, text_prompt, task_type, inpaint_prompt, box_threshold, text_threshold], outputs=[gallery])
|
| 293 |
|
| 294 |
|
| 295 |
-
block.launch(server_name='0.0.0.0', server_port=
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
# os.system('pip install v0.1.0-alpha2.tar.gz')
|
| 3 |
import gradio as gr
|
| 4 |
|
| 5 |
import argparse
|
|
|
|
| 6 |
import copy
|
| 7 |
|
| 8 |
import numpy as np
|
| 9 |
import torch
|
| 10 |
+
import torchvision
|
| 11 |
from PIL import Image, ImageDraw, ImageFont
|
| 12 |
|
| 13 |
# Grounding DINO
|
|
|
|
| 32 |
from diffusers import StableDiffusionInpaintPipeline
|
| 33 |
from huggingface_hub import hf_hub_download
|
| 34 |
|
| 35 |
+
# BLIP
|
| 36 |
+
from transformers import BlipProcessor, BlipForConditionalGeneration
|
| 37 |
+
|
| 38 |
+
|
| 39 |
def load_model_hf(model_config_path, repo_id, filename, device='cpu'):
|
| 40 |
args = SLConfig.fromfile(model_config_path)
|
| 41 |
model = build_model(args)
|
|
|
|
| 48 |
_ = model.eval()
|
| 49 |
return model
|
| 50 |
|
| 51 |
+
def generate_caption(processor, blip_model, raw_image):
|
| 52 |
+
# unconditional image captioning
|
| 53 |
+
inputs = processor(raw_image, return_tensors="pt").to("cuda", torch.float16)
|
| 54 |
+
out = blip_model.generate(**inputs)
|
| 55 |
+
caption = processor.decode(out[0], skip_special_tokens=True)
|
| 56 |
+
return caption
|
| 57 |
+
|
| 58 |
def plot_boxes_to_image(image_pil, tgt):
|
| 59 |
H, W = tgt["size"]
|
| 60 |
boxes = tgt["boxes"]
|
|
|
|
| 148 |
tokenized = tokenlizer(caption)
|
| 149 |
# build pred
|
| 150 |
pred_phrases = []
|
| 151 |
+
scores = []
|
| 152 |
for logit, box in zip(logits_filt, boxes_filt):
|
| 153 |
pred_phrase = get_phrases_from_posmap(logit > text_threshold, tokenized, tokenlizer)
|
| 154 |
if with_logits:
|
| 155 |
pred_phrases.append(pred_phrase + f"({str(logit.max().item())[:4]})")
|
| 156 |
else:
|
| 157 |
pred_phrases.append(pred_phrase)
|
| 158 |
+
scores.append(logit.max().item())
|
| 159 |
|
| 160 |
+
return boxes_filt, torch.Tensor(scores), pred_phrases
|
| 161 |
|
| 162 |
def show_mask(mask, ax, random_color=False):
|
| 163 |
if random_color:
|
|
|
|
| 179 |
config_file = 'GroundingDINO/groundingdino/config/GroundingDINO_SwinT_OGC.py'
|
| 180 |
ckpt_repo_id = "ShilongLiu/GroundingDINO"
|
| 181 |
ckpt_filenmae = "groundingdino_swint_ogc.pth"
|
| 182 |
+
sam_checkpoint='sam_vit_h_4b8939.pth'
|
| 183 |
output_dir="outputs"
|
| 184 |
device="cuda"
|
| 185 |
|
| 186 |
+
def run_grounded_sam(image_path, text_prompt, task_type, inpaint_prompt, box_threshold, text_threshold, iou_threshold, inpaint_mode):
|
|
|
|
| 187 |
|
| 188 |
# make dir
|
| 189 |
os.makedirs(output_dir, exist_ok=True)
|
|
|
|
| 191 |
image_pil, image = load_image(image_path.convert("RGB"))
|
| 192 |
# load model
|
| 193 |
model = load_model_hf(config_file, ckpt_repo_id, ckpt_filenmae)
|
| 194 |
+
# model = load_model(config_file, ckpt_filenmae, device=device)
|
| 195 |
|
| 196 |
# visualize raw image
|
| 197 |
image_pil.save(os.path.join(output_dir, "raw_image.jpg"))
|
| 198 |
|
| 199 |
+
if task_type == 'automatic':
|
| 200 |
+
# generate caption and tags
|
| 201 |
+
# use Tag2Text can generate better captions
|
| 202 |
+
# https://huggingface.co/spaces/xinyu1205/Tag2Text
|
| 203 |
+
# but there are some bugs...
|
| 204 |
+
processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-large")
|
| 205 |
+
blip_model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-large", torch_dtype=torch.float16).to("cuda")
|
| 206 |
+
text_prompt = generate_caption(processor, blip_model, image_pil)
|
| 207 |
+
print(f"Caption: {text_prompt}")
|
| 208 |
+
|
| 209 |
# run grounding dino model
|
| 210 |
+
boxes_filt, scores, pred_phrases = get_grounding_output(
|
| 211 |
model, image, text_prompt, box_threshold, text_threshold, device=device
|
| 212 |
)
|
| 213 |
|
| 214 |
size = image_pil.size
|
| 215 |
|
| 216 |
+
if task_type == 'seg' or task_type == 'inpainting' or task_type == 'automatic':
|
| 217 |
# initialize SAM
|
| 218 |
predictor = SamPredictor(build_sam(checkpoint=sam_checkpoint))
|
| 219 |
image = np.array(image_path)
|
|
|
|
| 226 |
boxes_filt[i][2:] += boxes_filt[i][:2]
|
| 227 |
|
| 228 |
boxes_filt = boxes_filt.cpu()
|
| 229 |
+
|
| 230 |
+
if task_type == 'automatic':
|
| 231 |
+
# use NMS to handle overlapped boxes
|
| 232 |
+
print(f"Before NMS: {boxes_filt.shape[0]} boxes")
|
| 233 |
+
nms_idx = torchvision.ops.nms(boxes_filt, scores, iou_threshold).numpy().tolist()
|
| 234 |
+
boxes_filt = boxes_filt[nms_idx]
|
| 235 |
+
pred_phrases = [pred_phrases[idx] for idx in nms_idx]
|
| 236 |
+
print(f"After NMS: {boxes_filt.shape[0]} boxes")
|
| 237 |
+
print(f"Revise caption with number: {text_prompt}")
|
| 238 |
+
|
| 239 |
transformed_boxes = predictor.transform.apply_boxes_torch(boxes_filt, image.shape[:2])
|
| 240 |
|
| 241 |
masks, _, _ = predictor.predict_torch(
|
|
|
|
| 259 |
image_with_box.save(image_path)
|
| 260 |
image_result = cv2.cvtColor(cv2.imread(image_path), cv2.COLOR_BGR2RGB)
|
| 261 |
return image_result
|
| 262 |
+
elif task_type == 'seg' or task_type == 'automatic':
|
| 263 |
assert sam_checkpoint, 'sam_checkpoint is not found!'
|
| 264 |
|
| 265 |
# draw output image
|
|
|
|
| 269 |
show_mask(mask.cpu().numpy(), plt.gca(), random_color=True)
|
| 270 |
for box, label in zip(boxes_filt, pred_phrases):
|
| 271 |
show_box(box.numpy(), plt.gca(), label)
|
| 272 |
+
if task_type == 'automatic':
|
| 273 |
+
plt.title(text_prompt)
|
| 274 |
plt.axis('off')
|
| 275 |
image_path = os.path.join(output_dir, "grounding_dino_output.jpg")
|
| 276 |
plt.savefig(image_path, bbox_inches="tight")
|
|
|
|
| 279 |
elif task_type == 'inpainting':
|
| 280 |
assert inpaint_prompt, 'inpaint_prompt is not found!'
|
| 281 |
# inpainting pipeline
|
| 282 |
+
if inpaint_mode == 'merge':
|
| 283 |
+
masks = torch.sum(masks, dim=0).unsqueeze(0)
|
| 284 |
+
masks = torch.where(masks > 0, True, False)
|
| 285 |
+
else:
|
| 286 |
+
mask = masks[0][0].cpu().numpy() # simply choose the first mask, which will be refine in the future release
|
| 287 |
mask_pil = Image.fromarray(mask)
|
|
|
|
| 288 |
|
| 289 |
pipe = StableDiffusionInpaintPipeline.from_pretrained(
|
| 290 |
"runwayml/stable-diffusion-inpainting", torch_dtype=torch.float16
|
| 291 |
)
|
| 292 |
pipe = pipe.to("cuda")
|
| 293 |
|
| 294 |
+
image_pil = image_pil.resize((512, 512))
|
| 295 |
+
mask_pil = mask_pil.resize((512, 512))
|
| 296 |
+
|
| 297 |
image = pipe(prompt=inpaint_prompt, image=image_pil, mask_image=mask_pil).images[0]
|
| 298 |
+
image = image.resize(size)
|
| 299 |
+
|
| 300 |
image_path = os.path.join(output_dir, "grounded_sam_inpainting_output.jpg")
|
| 301 |
image.save(image_path)
|
| 302 |
image_result = cv2.cvtColor(cv2.imread(image_path), cv2.COLOR_BGR2RGB)
|
|
|
|
| 309 |
parser = argparse.ArgumentParser("Grounded SAM demo", add_help=True)
|
| 310 |
parser.add_argument("--debug", action="store_true", help="using debug mode")
|
| 311 |
parser.add_argument("--share", action="store_true", help="share the app")
|
| 312 |
+
parser.add_argument('--port', type=int, default=7589, help='port to run the server')
|
| 313 |
args = parser.parse_args()
|
| 314 |
|
| 315 |
block = gr.Blocks().queue()
|
| 316 |
with block:
|
| 317 |
with gr.Row():
|
| 318 |
with gr.Column():
|
| 319 |
+
input_image = gr.Image(source='upload', type="pil", value="assets/demo1.jpg")
|
| 320 |
+
task_type = gr.Dropdown(["det", "seg", "inpainting", "automatic"], value="automatic", label="task_type")
|
| 321 |
+
text_prompt = gr.Textbox(label="Text Prompt")
|
| 322 |
inpaint_prompt = gr.Textbox(label="Inpaint Prompt")
|
| 323 |
run_button = gr.Button(label="Run")
|
| 324 |
with gr.Accordion("Advanced options", open=False):
|
|
|
|
| 328 |
text_threshold = gr.Slider(
|
| 329 |
label="Text Threshold", minimum=0.0, maximum=1.0, value=0.25, step=0.001
|
| 330 |
)
|
| 331 |
+
iou_threshold = gr.Slider(
|
| 332 |
+
label="IOU Threshold", minimum=0.0, maximum=1.0, value=0.5, step=0.001
|
| 333 |
+
)
|
| 334 |
+
inpaint_mode = gr.Dropdown(["merge", "first"], value="merge", label="inpaint_mode")
|
| 335 |
|
| 336 |
with gr.Column():
|
| 337 |
gallery = gr.outputs.Image(
|
|
|
|
| 339 |
).style(full_width=True, full_height=True)
|
| 340 |
|
| 341 |
run_button.click(fn=run_grounded_sam, inputs=[
|
| 342 |
+
input_image, text_prompt, task_type, inpaint_prompt, box_threshold, text_threshold, iou_threshold, inpaint_mode], outputs=[gallery])
|
| 343 |
|
| 344 |
|
| 345 |
+
block.launch(server_name='0.0.0.0', server_port=args.port, debug=args.debug, share=args.share)
|
gradio_auto_label.py
ADDED
|
@@ -0,0 +1,392 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import json
|
| 3 |
+
import argparse
|
| 4 |
+
import os
|
| 5 |
+
import copy
|
| 6 |
+
|
| 7 |
+
import numpy as np
|
| 8 |
+
import torch
|
| 9 |
+
import torchvision
|
| 10 |
+
from PIL import Image, ImageDraw, ImageFont
|
| 11 |
+
import openai
|
| 12 |
+
# Grounding DINO
|
| 13 |
+
import GroundingDINO.groundingdino.datasets.transforms as T
|
| 14 |
+
from GroundingDINO.groundingdino.models import build_model
|
| 15 |
+
from GroundingDINO.groundingdino.util import box_ops
|
| 16 |
+
from GroundingDINO.groundingdino.util.slconfig import SLConfig
|
| 17 |
+
from GroundingDINO.groundingdino.util.utils import clean_state_dict, get_phrases_from_posmap
|
| 18 |
+
from transformers import BlipProcessor, BlipForConditionalGeneration
|
| 19 |
+
# segment anything
|
| 20 |
+
from segment_anything import build_sam, SamPredictor
|
| 21 |
+
from segment_anything.utils.amg import remove_small_regions
|
| 22 |
+
import cv2
|
| 23 |
+
import numpy as np
|
| 24 |
+
import matplotlib.pyplot as plt
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
# diffusers
|
| 28 |
+
import PIL
|
| 29 |
+
import requests
|
| 30 |
+
import torch
|
| 31 |
+
from io import BytesIO
|
| 32 |
+
from huggingface_hub import hf_hub_download
|
| 33 |
+
from sys import platform
|
| 34 |
+
|
| 35 |
+
#macos
|
| 36 |
+
if platform == 'darwin':
|
| 37 |
+
import matplotlib
|
| 38 |
+
matplotlib.use('agg')
|
| 39 |
+
|
| 40 |
+
def load_model_hf(model_config_path, repo_id, filename, device='cpu'):
|
| 41 |
+
args = SLConfig.fromfile(model_config_path)
|
| 42 |
+
model = build_model(args)
|
| 43 |
+
args.device = device
|
| 44 |
+
|
| 45 |
+
cache_file = hf_hub_download(repo_id=repo_id, filename=filename)
|
| 46 |
+
checkpoint = torch.load(cache_file, map_location='cpu')
|
| 47 |
+
log = model.load_state_dict(clean_state_dict(checkpoint['model']), strict=False)
|
| 48 |
+
print("Model loaded from {} \n => {}".format(cache_file, log))
|
| 49 |
+
_ = model.eval()
|
| 50 |
+
return model
|
| 51 |
+
|
| 52 |
+
def plot_boxes_to_image(image_pil, tgt):
|
| 53 |
+
H, W = tgt["size"]
|
| 54 |
+
boxes = tgt["boxes"]
|
| 55 |
+
labels = tgt["labels"]
|
| 56 |
+
assert len(boxes) == len(labels), "boxes and labels must have same length"
|
| 57 |
+
|
| 58 |
+
draw = ImageDraw.Draw(image_pil)
|
| 59 |
+
mask = Image.new("L", image_pil.size, 0)
|
| 60 |
+
mask_draw = ImageDraw.Draw(mask)
|
| 61 |
+
|
| 62 |
+
# draw boxes and masks
|
| 63 |
+
for box, label in zip(boxes, labels):
|
| 64 |
+
# from 0..1 to 0..W, 0..H
|
| 65 |
+
box = box * torch.Tensor([W, H, W, H])
|
| 66 |
+
# from xywh to xyxy
|
| 67 |
+
box[:2] -= box[2:] / 2
|
| 68 |
+
box[2:] += box[:2]
|
| 69 |
+
# random color
|
| 70 |
+
color = tuple(np.random.randint(0, 255, size=3).tolist())
|
| 71 |
+
# draw
|
| 72 |
+
x0, y0, x1, y1 = box
|
| 73 |
+
x0, y0, x1, y1 = int(x0), int(y0), int(x1), int(y1)
|
| 74 |
+
|
| 75 |
+
draw.rectangle([x0, y0, x1, y1], outline=color, width=6)
|
| 76 |
+
# draw.text((x0, y0), str(label), fill=color)
|
| 77 |
+
|
| 78 |
+
font = ImageFont.load_default()
|
| 79 |
+
if hasattr(font, "getbbox"):
|
| 80 |
+
bbox = draw.textbbox((x0, y0), str(label), font)
|
| 81 |
+
else:
|
| 82 |
+
w, h = draw.textsize(str(label), font)
|
| 83 |
+
bbox = (x0, y0, w + x0, y0 + h)
|
| 84 |
+
# bbox = draw.textbbox((x0, y0), str(label))
|
| 85 |
+
draw.rectangle(bbox, fill=color)
|
| 86 |
+
draw.text((x0, y0), str(label), fill="white")
|
| 87 |
+
|
| 88 |
+
mask_draw.rectangle([x0, y0, x1, y1], fill=255, width=6)
|
| 89 |
+
|
| 90 |
+
return image_pil, mask
|
| 91 |
+
|
| 92 |
+
def load_image(image_path):
|
| 93 |
+
# # load image
|
| 94 |
+
# image_pil = Image.open(image_path).convert("RGB") # load image
|
| 95 |
+
image_pil = image_path
|
| 96 |
+
|
| 97 |
+
transform = T.Compose(
|
| 98 |
+
[
|
| 99 |
+
T.RandomResize([800], max_size=1333),
|
| 100 |
+
T.ToTensor(),
|
| 101 |
+
T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
|
| 102 |
+
]
|
| 103 |
+
)
|
| 104 |
+
image, _ = transform(image_pil, None) # 3, h, w
|
| 105 |
+
return image_pil, image
|
| 106 |
+
|
| 107 |
+
|
| 108 |
+
def load_model(model_config_path, model_checkpoint_path, device):
|
| 109 |
+
args = SLConfig.fromfile(model_config_path)
|
| 110 |
+
args.device = device
|
| 111 |
+
model = build_model(args)
|
| 112 |
+
checkpoint = torch.load(model_checkpoint_path, map_location="cpu")
|
| 113 |
+
load_res = model.load_state_dict(clean_state_dict(checkpoint["model"]), strict=False)
|
| 114 |
+
_ = model.eval()
|
| 115 |
+
return model
|
| 116 |
+
|
| 117 |
+
|
| 118 |
+
def get_grounding_output(model, image, caption, box_threshold, text_threshold, with_logits=True, device="cpu"):
|
| 119 |
+
caption = caption.lower()
|
| 120 |
+
caption = caption.strip()
|
| 121 |
+
if not caption.endswith("."):
|
| 122 |
+
caption = caption + "."
|
| 123 |
+
model = model.to(device)
|
| 124 |
+
image = image.to(device)
|
| 125 |
+
with torch.no_grad():
|
| 126 |
+
outputs = model(image[None], captions=[caption])
|
| 127 |
+
logits = outputs["pred_logits"].cpu().sigmoid()[0] # (nq, 256)
|
| 128 |
+
boxes = outputs["pred_boxes"].cpu()[0] # (nq, 4)
|
| 129 |
+
logits.shape[0]
|
| 130 |
+
|
| 131 |
+
# filter output
|
| 132 |
+
logits_filt = logits.clone()
|
| 133 |
+
boxes_filt = boxes.clone()
|
| 134 |
+
filt_mask = logits_filt.max(dim=1)[0] > box_threshold
|
| 135 |
+
logits_filt = logits_filt[filt_mask] # num_filt, 256
|
| 136 |
+
boxes_filt = boxes_filt[filt_mask] # num_filt, 4
|
| 137 |
+
logits_filt.shape[0]
|
| 138 |
+
|
| 139 |
+
# get phrase
|
| 140 |
+
tokenlizer = model.tokenizer
|
| 141 |
+
tokenized = tokenlizer(caption)
|
| 142 |
+
# build pred
|
| 143 |
+
pred_phrases = []
|
| 144 |
+
scores = []
|
| 145 |
+
for logit, box in zip(logits_filt, boxes_filt):
|
| 146 |
+
pred_phrase = get_phrases_from_posmap(logit > text_threshold, tokenized, tokenlizer)
|
| 147 |
+
if with_logits:
|
| 148 |
+
pred_phrases.append(pred_phrase + f"({str(logit.max().item())[:4]})")
|
| 149 |
+
else:
|
| 150 |
+
pred_phrases.append(pred_phrase)
|
| 151 |
+
scores.append(logit.max().item())
|
| 152 |
+
|
| 153 |
+
return boxes_filt, torch.Tensor(scores), pred_phrases
|
| 154 |
+
|
| 155 |
+
def show_mask(mask, ax, random_color=False):
|
| 156 |
+
if random_color:
|
| 157 |
+
color = np.concatenate([np.random.random(3), np.array([0.6])], axis=0)
|
| 158 |
+
else:
|
| 159 |
+
color = np.array([30/255, 144/255, 255/255, 0.6])
|
| 160 |
+
h, w = mask.shape[-2:]
|
| 161 |
+
mask_image = mask.reshape(h, w, 1) * color.reshape(1, 1, -1)
|
| 162 |
+
ax.imshow(mask_image)
|
| 163 |
+
|
| 164 |
+
def save_mask_data(output_dir, mask_list, box_list, label_list):
|
| 165 |
+
value = 0 # 0 for background
|
| 166 |
+
|
| 167 |
+
mask_img = torch.zeros(mask_list.shape[-2:])
|
| 168 |
+
for idx, mask in enumerate(mask_list):
|
| 169 |
+
mask_img[mask.cpu().numpy()[0] == True] = value + idx + 1
|
| 170 |
+
plt.figure(figsize=(10, 10))
|
| 171 |
+
plt.imshow(mask_img.numpy())
|
| 172 |
+
plt.axis('off')
|
| 173 |
+
mask_img_path = os.path.join(output_dir, 'mask.jpg')
|
| 174 |
+
plt.savefig(mask_img_path, bbox_inches="tight", dpi=300, pad_inches=0.0)
|
| 175 |
+
|
| 176 |
+
json_data = [{
|
| 177 |
+
'value': value,
|
| 178 |
+
'label': 'background'
|
| 179 |
+
}]
|
| 180 |
+
for label, box in zip(label_list, box_list):
|
| 181 |
+
value += 1
|
| 182 |
+
name, logit = label.split('(')
|
| 183 |
+
logit = logit[:-1] # the last is ')'
|
| 184 |
+
json_data.append({
|
| 185 |
+
'value': value,
|
| 186 |
+
'label': name,
|
| 187 |
+
'logit': float(logit),
|
| 188 |
+
'box': box.numpy().tolist(),
|
| 189 |
+
})
|
| 190 |
+
|
| 191 |
+
mask_json_path = os.path.join(output_dir, 'mask.json')
|
| 192 |
+
with open(mask_json_path, 'w') as f:
|
| 193 |
+
json.dump(json_data, f)
|
| 194 |
+
|
| 195 |
+
return mask_img_path, mask_json_path
|
| 196 |
+
|
| 197 |
+
def show_box(box, ax, label):
|
| 198 |
+
x0, y0 = box[0], box[1]
|
| 199 |
+
w, h = box[2] - box[0], box[3] - box[1]
|
| 200 |
+
ax.add_patch(plt.Rectangle((x0, y0), w, h, edgecolor='green', facecolor=(0,0,0,0), lw=2))
|
| 201 |
+
ax.text(x0, y0, label)
|
| 202 |
+
|
| 203 |
+
config_file = 'GroundingDINO/groundingdino/config/GroundingDINO_SwinT_OGC.py'
|
| 204 |
+
ckpt_repo_id = "ShilongLiu/GroundingDINO"
|
| 205 |
+
ckpt_filenmae = "groundingdino_swint_ogc.pth"
|
| 206 |
+
sam_checkpoint='sam_vit_h_4b8939.pth'
|
| 207 |
+
output_dir="outputs"
|
| 208 |
+
device="cpu"
|
| 209 |
+
|
| 210 |
+
processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-large")
|
| 211 |
+
blip_model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-large")
|
| 212 |
+
|
| 213 |
+
def generate_caption(raw_image):
|
| 214 |
+
# unconditional image captioning
|
| 215 |
+
inputs = processor(raw_image, return_tensors="pt")
|
| 216 |
+
out = blip_model.generate(**inputs)
|
| 217 |
+
caption = processor.decode(out[0], skip_special_tokens=True)
|
| 218 |
+
return caption
|
| 219 |
+
|
| 220 |
+
|
| 221 |
+
def generate_tags(caption, split=',', max_tokens=100, model="gpt-3.5-turbo", openai_key=''):
|
| 222 |
+
openai.api_key = openai_key
|
| 223 |
+
prompt = [
|
| 224 |
+
{
|
| 225 |
+
'role': 'system',
|
| 226 |
+
'content': 'Extract the unique nouns in the caption. Remove all the adjectives. ' + \
|
| 227 |
+
f'List the nouns in singular form. Split them by "{split} ". ' + \
|
| 228 |
+
f'Caption: {caption}.'
|
| 229 |
+
}
|
| 230 |
+
]
|
| 231 |
+
response = openai.ChatCompletion.create(model=model, messages=prompt, temperature=0.6, max_tokens=max_tokens)
|
| 232 |
+
reply = response['choices'][0]['message']['content']
|
| 233 |
+
# sometimes return with "noun: xxx, xxx, xxx"
|
| 234 |
+
tags = reply.split(':')[-1].strip()
|
| 235 |
+
return tags
|
| 236 |
+
|
| 237 |
+
def check_caption(caption, pred_phrases, max_tokens=100, model="gpt-3.5-turbo"):
|
| 238 |
+
object_list = [obj.split('(')[0] for obj in pred_phrases]
|
| 239 |
+
object_num = []
|
| 240 |
+
for obj in set(object_list):
|
| 241 |
+
object_num.append(f'{object_list.count(obj)} {obj}')
|
| 242 |
+
object_num = ', '.join(object_num)
|
| 243 |
+
print(f"Correct object number: {object_num}")
|
| 244 |
+
|
| 245 |
+
prompt = [
|
| 246 |
+
{
|
| 247 |
+
'role': 'system',
|
| 248 |
+
'content': 'Revise the number in the caption if it is wrong. ' + \
|
| 249 |
+
f'Caption: {caption}. ' + \
|
| 250 |
+
f'True object number: {object_num}. ' + \
|
| 251 |
+
'Only give the revised caption: '
|
| 252 |
+
}
|
| 253 |
+
]
|
| 254 |
+
response = openai.ChatCompletion.create(model=model, messages=prompt, temperature=0.6, max_tokens=max_tokens)
|
| 255 |
+
reply = response['choices'][0]['message']['content']
|
| 256 |
+
# sometimes return with "Caption: xxx, xxx, xxx"
|
| 257 |
+
caption = reply.split(':')[-1].strip()
|
| 258 |
+
return caption
|
| 259 |
+
|
| 260 |
+
def run_grounded_sam(image_path, openai_key, box_threshold, text_threshold, iou_threshold, area_threshold):
|
| 261 |
+
assert openai_key, 'Openai key is not found!'
|
| 262 |
+
|
| 263 |
+
# make dir
|
| 264 |
+
os.makedirs(output_dir, exist_ok=True)
|
| 265 |
+
# load image
|
| 266 |
+
image_pil, image = load_image(image_path.convert("RGB"))
|
| 267 |
+
# load model
|
| 268 |
+
model = load_model_hf(config_file, ckpt_repo_id, ckpt_filenmae)
|
| 269 |
+
|
| 270 |
+
# visualize raw image
|
| 271 |
+
image_pil.save(os.path.join(output_dir, "raw_image.jpg"))
|
| 272 |
+
|
| 273 |
+
caption = generate_caption(image_pil)
|
| 274 |
+
# Currently ", " is better for detecting single tags
|
| 275 |
+
# while ". " is a little worse in some case
|
| 276 |
+
split = ','
|
| 277 |
+
tags = generate_tags(caption, split=split, openai_key=openai_key)
|
| 278 |
+
|
| 279 |
+
# run grounding dino model
|
| 280 |
+
boxes_filt, scores, pred_phrases = get_grounding_output(
|
| 281 |
+
model, image, tags, box_threshold, text_threshold, device=device
|
| 282 |
+
)
|
| 283 |
+
|
| 284 |
+
size = image_pil.size
|
| 285 |
+
|
| 286 |
+
# initialize SAM
|
| 287 |
+
predictor = SamPredictor(build_sam(checkpoint=sam_checkpoint))
|
| 288 |
+
image = np.array(image_path)
|
| 289 |
+
predictor.set_image(image)
|
| 290 |
+
|
| 291 |
+
H, W = size[1], size[0]
|
| 292 |
+
for i in range(boxes_filt.size(0)):
|
| 293 |
+
boxes_filt[i] = boxes_filt[i] * torch.Tensor([W, H, W, H])
|
| 294 |
+
boxes_filt[i][:2] -= boxes_filt[i][2:] / 2
|
| 295 |
+
boxes_filt[i][2:] += boxes_filt[i][:2]
|
| 296 |
+
|
| 297 |
+
boxes_filt = boxes_filt.cpu()
|
| 298 |
+
# use NMS to handle overlapped boxes
|
| 299 |
+
print(f"Before NMS: {boxes_filt.shape[0]} boxes")
|
| 300 |
+
nms_idx = torchvision.ops.nms(boxes_filt, scores, iou_threshold).numpy().tolist()
|
| 301 |
+
boxes_filt = boxes_filt[nms_idx]
|
| 302 |
+
pred_phrases = [pred_phrases[idx] for idx in nms_idx]
|
| 303 |
+
print(f"After NMS: {boxes_filt.shape[0]} boxes")
|
| 304 |
+
caption = check_caption(caption, pred_phrases)
|
| 305 |
+
print(f"Revise caption with number: {caption}")
|
| 306 |
+
|
| 307 |
+
transformed_boxes = predictor.transform.apply_boxes_torch(boxes_filt, image.shape[:2])
|
| 308 |
+
|
| 309 |
+
masks, _, _ = predictor.predict_torch(
|
| 310 |
+
point_coords = None,
|
| 311 |
+
point_labels = None,
|
| 312 |
+
boxes = transformed_boxes,
|
| 313 |
+
multimask_output = False,
|
| 314 |
+
)
|
| 315 |
+
# area threshold: remove the mask when area < area_thresh (in pixels)
|
| 316 |
+
new_masks = []
|
| 317 |
+
for mask in masks:
|
| 318 |
+
# reshape to be used in remove_small_regions()
|
| 319 |
+
mask = mask.cpu().numpy().squeeze()
|
| 320 |
+
mask, _ = remove_small_regions(mask, area_threshold, mode="holes")
|
| 321 |
+
mask, _ = remove_small_regions(mask, area_threshold, mode="islands")
|
| 322 |
+
new_masks.append(torch.as_tensor(mask).unsqueeze(0))
|
| 323 |
+
|
| 324 |
+
masks = torch.stack(new_masks, dim=0)
|
| 325 |
+
# masks: [1, 1, 512, 512]
|
| 326 |
+
assert sam_checkpoint, 'sam_checkpoint is not found!'
|
| 327 |
+
|
| 328 |
+
# draw output image
|
| 329 |
+
plt.figure(figsize=(10, 10))
|
| 330 |
+
plt.imshow(image)
|
| 331 |
+
for mask in masks:
|
| 332 |
+
show_mask(mask.cpu().numpy(), plt.gca(), random_color=True)
|
| 333 |
+
for box, label in zip(boxes_filt, pred_phrases):
|
| 334 |
+
show_box(box.numpy(), plt.gca(), label)
|
| 335 |
+
plt.axis('off')
|
| 336 |
+
image_path = os.path.join(output_dir, "grounding_dino_output.jpg")
|
| 337 |
+
plt.savefig(image_path, bbox_inches="tight")
|
| 338 |
+
image_result = cv2.cvtColor(cv2.imread(image_path), cv2.COLOR_BGR2RGB)
|
| 339 |
+
|
| 340 |
+
mask_img_path, _ = save_mask_data('./outputs', masks, boxes_filt, pred_phrases)
|
| 341 |
+
|
| 342 |
+
mask_img = cv2.cvtColor(cv2.imread(mask_img_path), cv2.COLOR_BGR2RGB)
|
| 343 |
+
|
| 344 |
+
return image_result, mask_img, caption, tags
|
| 345 |
+
|
| 346 |
+
if __name__ == "__main__":
|
| 347 |
+
|
| 348 |
+
parser = argparse.ArgumentParser("Grounded SAM demo", add_help=True)
|
| 349 |
+
parser.add_argument("--debug", action="store_true", help="using debug mode")
|
| 350 |
+
parser.add_argument("--share", action="store_true", help="share the app")
|
| 351 |
+
args = parser.parse_args()
|
| 352 |
+
|
| 353 |
+
block = gr.Blocks().queue()
|
| 354 |
+
with block:
|
| 355 |
+
with gr.Row():
|
| 356 |
+
with gr.Column():
|
| 357 |
+
input_image = gr.Image(source='upload', type="pil")
|
| 358 |
+
openai_key = gr.Textbox(label="OpenAI key")
|
| 359 |
+
|
| 360 |
+
run_button = gr.Button(label="Run")
|
| 361 |
+
with gr.Accordion("Advanced options", open=False):
|
| 362 |
+
box_threshold = gr.Slider(
|
| 363 |
+
label="Box Threshold", minimum=0.0, maximum=1.0, value=0.3, step=0.001
|
| 364 |
+
)
|
| 365 |
+
text_threshold = gr.Slider(
|
| 366 |
+
label="Text Threshold", minimum=0.0, maximum=1.0, value=0.25, step=0.001
|
| 367 |
+
)
|
| 368 |
+
iou_threshold = gr.Slider(
|
| 369 |
+
label="IoU Threshold", minimum=0.0, maximum=1.0, value=0.5, step=0.001
|
| 370 |
+
)
|
| 371 |
+
area_threshold = gr.Slider(
|
| 372 |
+
label="Area Threshold", minimum=0.0, maximum=2500, value=100, step=10
|
| 373 |
+
)
|
| 374 |
+
|
| 375 |
+
with gr.Column():
|
| 376 |
+
image_caption = gr.Textbox(label="Image Caption")
|
| 377 |
+
identified_labels = gr.Textbox(label="Key objects extracted by ChatGPT")
|
| 378 |
+
gallery = gr.outputs.Image(
|
| 379 |
+
type="pil",
|
| 380 |
+
).style(full_width=True, full_height=True)
|
| 381 |
+
|
| 382 |
+
mask_gallary = gr.outputs.Image(
|
| 383 |
+
type="pil",
|
| 384 |
+
).style(full_width=True, full_height=True)
|
| 385 |
+
|
| 386 |
+
|
| 387 |
+
run_button.click(fn=run_grounded_sam, inputs=[
|
| 388 |
+
input_image, openai_key, box_threshold, text_threshold, iou_threshold, area_threshold],
|
| 389 |
+
outputs=[gallery, mask_gallary, image_caption, identified_labels])
|
| 390 |
+
|
| 391 |
+
|
| 392 |
+
block.launch(server_name='0.0.0.0', server_port=7589, debug=args.debug, share=args.share)
|
grounded_sam.ipynb
CHANGED
|
@@ -53,12 +53,21 @@
|
|
| 53 |
},
|
| 54 |
{
|
| 55 |
"cell_type": "code",
|
| 56 |
-
"execution_count":
|
| 57 |
"metadata": {},
|
| 58 |
"outputs": [],
|
| 59 |
"source": [
|
| 60 |
-
"import os\n",
|
| 61 |
"\n",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 62 |
"# If you have multiple GPUs, you can set the GPU to use here.\n",
|
| 63 |
"# The default is to use the first GPU, which is usually GPU 0.\n",
|
| 64 |
"os.environ[\"CUDA_VISIBLE_DEVICES\"] = \"0\""
|
|
@@ -85,7 +94,7 @@
|
|
| 85 |
"from GroundingDINO.groundingdino.util import box_ops\n",
|
| 86 |
"from GroundingDINO.groundingdino.util.slconfig import SLConfig\n",
|
| 87 |
"from GroundingDINO.groundingdino.util.utils import clean_state_dict, get_phrases_from_posmap\n",
|
| 88 |
-
"from groundingdino.util.inference import annotate, load_image, predict\n",
|
| 89 |
"\n",
|
| 90 |
"import supervision as sv\n",
|
| 91 |
"\n",
|
|
|
|
| 53 |
},
|
| 54 |
{
|
| 55 |
"cell_type": "code",
|
| 56 |
+
"execution_count": null,
|
| 57 |
"metadata": {},
|
| 58 |
"outputs": [],
|
| 59 |
"source": [
|
| 60 |
+
"import os, sys\n",
|
| 61 |
"\n",
|
| 62 |
+
"sys.path.append(os.path.join(os.getcwd(), \"GroundingDINO\"))"
|
| 63 |
+
]
|
| 64 |
+
},
|
| 65 |
+
{
|
| 66 |
+
"cell_type": "code",
|
| 67 |
+
"execution_count": 187,
|
| 68 |
+
"metadata": {},
|
| 69 |
+
"outputs": [],
|
| 70 |
+
"source": [
|
| 71 |
"# If you have multiple GPUs, you can set the GPU to use here.\n",
|
| 72 |
"# The default is to use the first GPU, which is usually GPU 0.\n",
|
| 73 |
"os.environ[\"CUDA_VISIBLE_DEVICES\"] = \"0\""
|
|
|
|
| 94 |
"from GroundingDINO.groundingdino.util import box_ops\n",
|
| 95 |
"from GroundingDINO.groundingdino.util.slconfig import SLConfig\n",
|
| 96 |
"from GroundingDINO.groundingdino.util.utils import clean_state_dict, get_phrases_from_posmap\n",
|
| 97 |
+
"from GroundingDINO.groundingdino.util.inference import annotate, load_image, predict\n",
|
| 98 |
"\n",
|
| 99 |
"import supervision as sv\n",
|
| 100 |
"\n",
|
grounded_sam_inpainting_demo.py
CHANGED
|
@@ -125,6 +125,7 @@ if __name__ == "__main__":
|
|
| 125 |
|
| 126 |
parser.add_argument("--box_threshold", type=float, default=0.3, help="box threshold")
|
| 127 |
parser.add_argument("--text_threshold", type=float, default=0.25, help="text threshold")
|
|
|
|
| 128 |
parser.add_argument("--device", type=str, default="cpu", help="running on cpu only!, default=False")
|
| 129 |
args = parser.parse_args()
|
| 130 |
|
|
@@ -138,6 +139,7 @@ if __name__ == "__main__":
|
|
| 138 |
output_dir = args.output_dir
|
| 139 |
box_threshold = args.box_threshold
|
| 140 |
text_threshold = args.box_threshold
|
|
|
|
| 141 |
device = args.device
|
| 142 |
|
| 143 |
# make dir
|
|
@@ -181,7 +183,11 @@ if __name__ == "__main__":
|
|
| 181 |
# masks: [1, 1, 512, 512]
|
| 182 |
|
| 183 |
# inpainting pipeline
|
| 184 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 185 |
mask_pil = Image.fromarray(mask)
|
| 186 |
image_pil = Image.fromarray(image)
|
| 187 |
|
|
@@ -190,8 +196,11 @@ if __name__ == "__main__":
|
|
| 190 |
)
|
| 191 |
pipe = pipe.to("cuda")
|
| 192 |
|
|
|
|
|
|
|
| 193 |
# prompt = "A sofa, high quality, detailed"
|
| 194 |
image = pipe(prompt=inpaint_prompt, image=image_pil, mask_image=mask_pil).images[0]
|
|
|
|
| 195 |
image.save(os.path.join(output_dir, "grounded_sam_inpainting_output.jpg"))
|
| 196 |
|
| 197 |
# draw output image
|
|
|
|
| 125 |
|
| 126 |
parser.add_argument("--box_threshold", type=float, default=0.3, help="box threshold")
|
| 127 |
parser.add_argument("--text_threshold", type=float, default=0.25, help="text threshold")
|
| 128 |
+
parser.add_argument("--inpaint_mode", type=str, default="first", help="inpaint mode")
|
| 129 |
parser.add_argument("--device", type=str, default="cpu", help="running on cpu only!, default=False")
|
| 130 |
args = parser.parse_args()
|
| 131 |
|
|
|
|
| 139 |
output_dir = args.output_dir
|
| 140 |
box_threshold = args.box_threshold
|
| 141 |
text_threshold = args.box_threshold
|
| 142 |
+
inpaint_mode = args.inpaint_mode
|
| 143 |
device = args.device
|
| 144 |
|
| 145 |
# make dir
|
|
|
|
| 183 |
# masks: [1, 1, 512, 512]
|
| 184 |
|
| 185 |
# inpainting pipeline
|
| 186 |
+
if inpaint_mode == 'merge':
|
| 187 |
+
masks = torch.sum(masks, dim=0).unsqueeze(0)
|
| 188 |
+
masks = torch.where(masks > 0, True, False)
|
| 189 |
+
else:
|
| 190 |
+
mask = masks[0][0].cpu().numpy() # simply choose the first mask, which will be refine in the future release
|
| 191 |
mask_pil = Image.fromarray(mask)
|
| 192 |
image_pil = Image.fromarray(image)
|
| 193 |
|
|
|
|
| 196 |
)
|
| 197 |
pipe = pipe.to("cuda")
|
| 198 |
|
| 199 |
+
image_pil = image_pil.resize((512, 512))
|
| 200 |
+
mask_pil = mask_pil.resize((512, 512))
|
| 201 |
# prompt = "A sofa, high quality, detailed"
|
| 202 |
image = pipe(prompt=inpaint_prompt, image=image_pil, mask_image=mask_pil).images[0]
|
| 203 |
+
image = image.resize(size)
|
| 204 |
image.save(os.path.join(output_dir, "grounded_sam_inpainting_output.jpg"))
|
| 205 |
|
| 206 |
# draw output image
|
grounded_sam_whisper_demo.py
ADDED
|
@@ -0,0 +1,258 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import argparse
|
| 2 |
+
import os
|
| 3 |
+
import copy
|
| 4 |
+
|
| 5 |
+
import numpy as np
|
| 6 |
+
import json
|
| 7 |
+
import torch
|
| 8 |
+
import torchvision
|
| 9 |
+
from PIL import Image, ImageDraw, ImageFont
|
| 10 |
+
|
| 11 |
+
# Grounding DINO
|
| 12 |
+
import GroundingDINO.groundingdino.datasets.transforms as T
|
| 13 |
+
from GroundingDINO.groundingdino.models import build_model
|
| 14 |
+
from GroundingDINO.groundingdino.util import box_ops
|
| 15 |
+
from GroundingDINO.groundingdino.util.slconfig import SLConfig
|
| 16 |
+
from GroundingDINO.groundingdino.util.utils import clean_state_dict, get_phrases_from_posmap
|
| 17 |
+
|
| 18 |
+
# segment anything
|
| 19 |
+
from segment_anything import build_sam, SamPredictor
|
| 20 |
+
import cv2
|
| 21 |
+
import numpy as np
|
| 22 |
+
import matplotlib.pyplot as plt
|
| 23 |
+
|
| 24 |
+
# whisper
|
| 25 |
+
import whisper
|
| 26 |
+
|
| 27 |
+
|
| 28 |
+
def load_image(image_path):
|
| 29 |
+
# load image
|
| 30 |
+
image_pil = Image.open(image_path).convert("RGB") # load image
|
| 31 |
+
|
| 32 |
+
transform = T.Compose(
|
| 33 |
+
[
|
| 34 |
+
T.RandomResize([800], max_size=1333),
|
| 35 |
+
T.ToTensor(),
|
| 36 |
+
T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
|
| 37 |
+
]
|
| 38 |
+
)
|
| 39 |
+
image, _ = transform(image_pil, None) # 3, h, w
|
| 40 |
+
return image_pil, image
|
| 41 |
+
|
| 42 |
+
|
| 43 |
+
def load_model(model_config_path, model_checkpoint_path, device):
|
| 44 |
+
args = SLConfig.fromfile(model_config_path)
|
| 45 |
+
args.device = device
|
| 46 |
+
model = build_model(args)
|
| 47 |
+
checkpoint = torch.load(model_checkpoint_path, map_location="cpu")
|
| 48 |
+
load_res = model.load_state_dict(clean_state_dict(checkpoint["model"]), strict=False)
|
| 49 |
+
print(load_res)
|
| 50 |
+
_ = model.eval()
|
| 51 |
+
return model
|
| 52 |
+
|
| 53 |
+
|
| 54 |
+
def get_grounding_output(model, image, caption, box_threshold, text_threshold,device="cpu"):
|
| 55 |
+
caption = caption.lower()
|
| 56 |
+
caption = caption.strip()
|
| 57 |
+
if not caption.endswith("."):
|
| 58 |
+
caption = caption + "."
|
| 59 |
+
model = model.to(device)
|
| 60 |
+
image = image.to(device)
|
| 61 |
+
with torch.no_grad():
|
| 62 |
+
outputs = model(image[None], captions=[caption])
|
| 63 |
+
logits = outputs["pred_logits"].cpu().sigmoid()[0] # (nq, 256)
|
| 64 |
+
boxes = outputs["pred_boxes"].cpu()[0] # (nq, 4)
|
| 65 |
+
logits.shape[0]
|
| 66 |
+
|
| 67 |
+
# filter output
|
| 68 |
+
logits_filt = logits.clone()
|
| 69 |
+
boxes_filt = boxes.clone()
|
| 70 |
+
filt_mask = logits_filt.max(dim=1)[0] > box_threshold
|
| 71 |
+
logits_filt = logits_filt[filt_mask] # num_filt, 256
|
| 72 |
+
boxes_filt = boxes_filt[filt_mask] # num_filt, 4
|
| 73 |
+
logits_filt.shape[0]
|
| 74 |
+
|
| 75 |
+
# get phrase
|
| 76 |
+
tokenlizer = model.tokenizer
|
| 77 |
+
tokenized = tokenlizer(caption)
|
| 78 |
+
# build pred
|
| 79 |
+
pred_phrases = []
|
| 80 |
+
scores = []
|
| 81 |
+
for logit, box in zip(logits_filt, boxes_filt):
|
| 82 |
+
pred_phrase = get_phrases_from_posmap(logit > text_threshold, tokenized, tokenlizer)
|
| 83 |
+
pred_phrases.append(pred_phrase + f"({str(logit.max().item())[:4]})")
|
| 84 |
+
scores.append(logit.max().item())
|
| 85 |
+
|
| 86 |
+
return boxes_filt, torch.Tensor(scores), pred_phrases
|
| 87 |
+
|
| 88 |
+
def show_mask(mask, ax, random_color=False):
|
| 89 |
+
if random_color:
|
| 90 |
+
color = np.concatenate([np.random.random(3), np.array([0.6])], axis=0)
|
| 91 |
+
else:
|
| 92 |
+
color = np.array([30/255, 144/255, 255/255, 0.6])
|
| 93 |
+
h, w = mask.shape[-2:]
|
| 94 |
+
mask_image = mask.reshape(h, w, 1) * color.reshape(1, 1, -1)
|
| 95 |
+
ax.imshow(mask_image)
|
| 96 |
+
|
| 97 |
+
|
| 98 |
+
def show_box(box, ax, label):
|
| 99 |
+
x0, y0 = box[0], box[1]
|
| 100 |
+
w, h = box[2] - box[0], box[3] - box[1]
|
| 101 |
+
ax.add_patch(plt.Rectangle((x0, y0), w, h, edgecolor='green', facecolor=(0,0,0,0), lw=2))
|
| 102 |
+
ax.text(x0, y0, label)
|
| 103 |
+
|
| 104 |
+
|
| 105 |
+
def save_mask_data(output_dir, mask_list, box_list, label_list):
|
| 106 |
+
value = 0 # 0 for background
|
| 107 |
+
|
| 108 |
+
mask_img = torch.zeros(mask_list.shape[-2:])
|
| 109 |
+
for idx, mask in enumerate(mask_list):
|
| 110 |
+
mask_img[mask.cpu().numpy()[0] == True] = value + idx + 1
|
| 111 |
+
plt.figure(figsize=(10, 10))
|
| 112 |
+
plt.imshow(mask_img.numpy())
|
| 113 |
+
plt.axis('off')
|
| 114 |
+
plt.savefig(os.path.join(output_dir, 'mask.jpg'), bbox_inches="tight", dpi=300, pad_inches=0.0)
|
| 115 |
+
|
| 116 |
+
json_data = [{
|
| 117 |
+
'value': value,
|
| 118 |
+
'label': 'background'
|
| 119 |
+
}]
|
| 120 |
+
for label, box in zip(label_list, box_list):
|
| 121 |
+
value += 1
|
| 122 |
+
name, logit = label.split('(')
|
| 123 |
+
logit = logit[:-1] # the last is ')'
|
| 124 |
+
json_data.append({
|
| 125 |
+
'value': value,
|
| 126 |
+
'label': name,
|
| 127 |
+
'logit': float(logit),
|
| 128 |
+
'box': box.numpy().tolist(),
|
| 129 |
+
})
|
| 130 |
+
with open(os.path.join(output_dir, 'mask.json'), 'w') as f:
|
| 131 |
+
json.dump(json_data, f)
|
| 132 |
+
|
| 133 |
+
|
| 134 |
+
def speech_recognition(speech_file, model):
|
| 135 |
+
# whisper
|
| 136 |
+
# load audio and pad/trim it to fit 30 seconds
|
| 137 |
+
audio = whisper.load_audio(speech_file)
|
| 138 |
+
audio = whisper.pad_or_trim(audio)
|
| 139 |
+
|
| 140 |
+
# make log-Mel spectrogram and move to the same device as the model
|
| 141 |
+
mel = whisper.log_mel_spectrogram(audio).to(model.device)
|
| 142 |
+
|
| 143 |
+
# detect the spoken language
|
| 144 |
+
_, probs = model.detect_language(mel)
|
| 145 |
+
speech_language = max(probs, key=probs.get)
|
| 146 |
+
|
| 147 |
+
# decode the audio
|
| 148 |
+
options = whisper.DecodingOptions()
|
| 149 |
+
result = whisper.decode(model, mel, options)
|
| 150 |
+
|
| 151 |
+
# print the recognized text
|
| 152 |
+
speech_text = result.text
|
| 153 |
+
return speech_text, speech_language
|
| 154 |
+
|
| 155 |
+
if __name__ == "__main__":
|
| 156 |
+
|
| 157 |
+
parser = argparse.ArgumentParser("Grounded-Segment-Anything Demo", add_help=True)
|
| 158 |
+
parser.add_argument("--config", type=str, required=True, help="path to config file")
|
| 159 |
+
parser.add_argument(
|
| 160 |
+
"--grounded_checkpoint", type=str, required=True, help="path to checkpoint file"
|
| 161 |
+
)
|
| 162 |
+
parser.add_argument(
|
| 163 |
+
"--sam_checkpoint", type=str, required=True, help="path to checkpoint file"
|
| 164 |
+
)
|
| 165 |
+
parser.add_argument("--input_image", type=str, required=True, help="path to image file")
|
| 166 |
+
parser.add_argument("--speech_file", type=str, required=True, help="speech file")
|
| 167 |
+
parser.add_argument(
|
| 168 |
+
"--output_dir", "-o", type=str, default="outputs", required=True, help="output directory"
|
| 169 |
+
)
|
| 170 |
+
|
| 171 |
+
parser.add_argument("--box_threshold", type=float, default=0.3, help="box threshold")
|
| 172 |
+
parser.add_argument("--text_threshold", type=float, default=0.25, help="text threshold")
|
| 173 |
+
parser.add_argument("--iou_threshold", type=float, default=0.5, help="iou threshold")
|
| 174 |
+
|
| 175 |
+
parser.add_argument("--device", type=str, default="cpu", help="running on cpu only!, default=False")
|
| 176 |
+
args = parser.parse_args()
|
| 177 |
+
|
| 178 |
+
# cfg
|
| 179 |
+
config_file = args.config # change the path of the model config file
|
| 180 |
+
grounded_checkpoint = args.grounded_checkpoint # change the path of the model
|
| 181 |
+
sam_checkpoint = args.sam_checkpoint
|
| 182 |
+
image_path = args.input_image
|
| 183 |
+
output_dir = args.output_dir
|
| 184 |
+
box_threshold = args.box_threshold
|
| 185 |
+
text_threshold = args.text_threshold
|
| 186 |
+
iou_threshold = args.iou_threshold
|
| 187 |
+
device = args.device
|
| 188 |
+
|
| 189 |
+
# load speech
|
| 190 |
+
whisper_model = whisper.load_model("base")
|
| 191 |
+
speech_text, speech_language = speech_recognition(args.speech_file, whisper_model)
|
| 192 |
+
print(f"speech_text: {speech_text}")
|
| 193 |
+
print(f"speech_language: {speech_language}")
|
| 194 |
+
|
| 195 |
+
# make dir
|
| 196 |
+
os.makedirs(output_dir, exist_ok=True)
|
| 197 |
+
# load image
|
| 198 |
+
image_pil, image = load_image(image_path)
|
| 199 |
+
# load model
|
| 200 |
+
model = load_model(config_file, grounded_checkpoint, device=device)
|
| 201 |
+
|
| 202 |
+
# visualize raw image
|
| 203 |
+
image_pil.save(os.path.join(output_dir, "raw_image.jpg"))
|
| 204 |
+
|
| 205 |
+
# run grounding dino model
|
| 206 |
+
text_prompt = speech_text
|
| 207 |
+
boxes_filt, scores, pred_phrases = get_grounding_output(
|
| 208 |
+
model, image, text_prompt, box_threshold, text_threshold, device=device
|
| 209 |
+
)
|
| 210 |
+
|
| 211 |
+
# initialize SAM
|
| 212 |
+
predictor = SamPredictor(build_sam(checkpoint=sam_checkpoint).to(args.device))
|
| 213 |
+
image = cv2.imread(image_path)
|
| 214 |
+
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
| 215 |
+
predictor.set_image(image)
|
| 216 |
+
|
| 217 |
+
size = image_pil.size
|
| 218 |
+
H, W = size[1], size[0]
|
| 219 |
+
for i in range(boxes_filt.size(0)):
|
| 220 |
+
boxes_filt[i] = boxes_filt[i] * torch.Tensor([W, H, W, H])
|
| 221 |
+
boxes_filt[i][:2] -= boxes_filt[i][2:] / 2
|
| 222 |
+
boxes_filt[i][2:] += boxes_filt[i][:2]
|
| 223 |
+
|
| 224 |
+
boxes_filt = boxes_filt.cpu()
|
| 225 |
+
# use NMS to handle overlapped boxes
|
| 226 |
+
print(f"Before NMS: {boxes_filt.shape[0]} boxes")
|
| 227 |
+
nms_idx = torchvision.ops.nms(boxes_filt, scores, iou_threshold).numpy().tolist()
|
| 228 |
+
boxes_filt = boxes_filt[nms_idx]
|
| 229 |
+
pred_phrases = [pred_phrases[idx] for idx in nms_idx]
|
| 230 |
+
print(f"After NMS: {boxes_filt.shape[0]} boxes")
|
| 231 |
+
|
| 232 |
+
transformed_boxes = predictor.transform.apply_boxes_torch(boxes_filt, image.shape[:2])
|
| 233 |
+
|
| 234 |
+
masks, _, _ = predictor.predict_torch(
|
| 235 |
+
point_coords = None,
|
| 236 |
+
point_labels = None,
|
| 237 |
+
boxes = transformed_boxes.to(args.device),
|
| 238 |
+
multimask_output = False,
|
| 239 |
+
)
|
| 240 |
+
|
| 241 |
+
# draw output image
|
| 242 |
+
plt.figure(figsize=(10, 10))
|
| 243 |
+
plt.imshow(image)
|
| 244 |
+
for mask in masks:
|
| 245 |
+
show_mask(mask.cpu().numpy(), plt.gca(), random_color=True)
|
| 246 |
+
for box, label in zip(boxes_filt, pred_phrases):
|
| 247 |
+
show_box(box.numpy(), plt.gca(), label)
|
| 248 |
+
|
| 249 |
+
plt.title(speech_text)
|
| 250 |
+
plt.axis('off')
|
| 251 |
+
plt.savefig(
|
| 252 |
+
os.path.join(output_dir, "grounded_sam_whisper_output.jpg"),
|
| 253 |
+
bbox_inches="tight", dpi=300, pad_inches=0.0
|
| 254 |
+
)
|
| 255 |
+
|
| 256 |
+
|
| 257 |
+
save_mask_data(output_dir, masks, boxes_filt, pred_phrases)
|
| 258 |
+
|
grounded_dino_sam_inpainting_demo.py → grounded_sam_whisper_inpainting_demo.py
RENAMED
|
@@ -1,6 +1,6 @@
|
|
| 1 |
import argparse
|
| 2 |
import os
|
| 3 |
-
import
|
| 4 |
|
| 5 |
import numpy as np
|
| 6 |
import torch
|
|
@@ -27,45 +27,12 @@ import torch
|
|
| 27 |
from io import BytesIO
|
| 28 |
from diffusers import StableDiffusionInpaintPipeline
|
| 29 |
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
boxes = tgt["boxes"]
|
| 33 |
-
labels = tgt["labels"]
|
| 34 |
-
assert len(boxes) == len(labels), "boxes and labels must have same length"
|
| 35 |
-
|
| 36 |
-
draw = ImageDraw.Draw(image_pil)
|
| 37 |
-
mask = Image.new("L", image_pil.size, 0)
|
| 38 |
-
mask_draw = ImageDraw.Draw(mask)
|
| 39 |
-
|
| 40 |
-
# draw boxes and masks
|
| 41 |
-
for box, label in zip(boxes, labels):
|
| 42 |
-
# from 0..1 to 0..W, 0..H
|
| 43 |
-
box = box * torch.Tensor([W, H, W, H])
|
| 44 |
-
# from xywh to xyxy
|
| 45 |
-
box[:2] -= box[2:] / 2
|
| 46 |
-
box[2:] += box[:2]
|
| 47 |
-
# random color
|
| 48 |
-
color = tuple(np.random.randint(0, 255, size=3).tolist())
|
| 49 |
-
# draw
|
| 50 |
-
x0, y0, x1, y1 = box
|
| 51 |
-
x0, y0, x1, y1 = int(x0), int(y0), int(x1), int(y1)
|
| 52 |
-
|
| 53 |
-
draw.rectangle([x0, y0, x1, y1], outline=color, width=6)
|
| 54 |
-
# draw.text((x0, y0), str(label), fill=color)
|
| 55 |
-
|
| 56 |
-
font = ImageFont.load_default()
|
| 57 |
-
if hasattr(font, "getbbox"):
|
| 58 |
-
bbox = draw.textbbox((x0, y0), str(label), font)
|
| 59 |
-
else:
|
| 60 |
-
w, h = draw.textsize(str(label), font)
|
| 61 |
-
bbox = (x0, y0, w + x0, y0 + h)
|
| 62 |
-
# bbox = draw.textbbox((x0, y0), str(label))
|
| 63 |
-
draw.rectangle(bbox, fill=color)
|
| 64 |
-
draw.text((x0, y0), str(label), fill="white")
|
| 65 |
|
| 66 |
-
|
|
|
|
| 67 |
|
| 68 |
-
return image_pil, mask
|
| 69 |
|
| 70 |
def load_image(image_path):
|
| 71 |
# load image
|
|
@@ -143,6 +110,48 @@ def show_box(box, ax, label):
|
|
| 143 |
w, h = box[2] - box[0], box[3] - box[1]
|
| 144 |
ax.add_patch(plt.Rectangle((x0, y0), w, h, edgecolor='green', facecolor=(0,0,0,0), lw=2))
|
| 145 |
ax.text(x0, y0, label)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 146 |
|
| 147 |
|
| 148 |
if __name__ == "__main__":
|
|
@@ -153,36 +162,38 @@ if __name__ == "__main__":
|
|
| 153 |
"--grounded_checkpoint", type=str, required=True, help="path to checkpoint file"
|
| 154 |
)
|
| 155 |
parser.add_argument(
|
| 156 |
-
"--sam_checkpoint", type=str, required=
|
| 157 |
)
|
| 158 |
-
parser.add_argument("--task_type", type=str, required=True, help="select task")
|
| 159 |
parser.add_argument("--input_image", type=str, required=True, help="path to image file")
|
| 160 |
-
parser.add_argument("--text_prompt", type=str, required=True, help="text prompt")
|
| 161 |
-
parser.add_argument("--inpaint_prompt", type=str, required=False, help="inpaint prompt")
|
| 162 |
parser.add_argument(
|
| 163 |
"--output_dir", "-o", type=str, default="outputs", required=True, help="output directory"
|
| 164 |
)
|
| 165 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 166 |
parser.add_argument("--box_threshold", type=float, default=0.3, help="box threshold")
|
| 167 |
parser.add_argument("--text_threshold", type=float, default=0.25, help="text threshold")
|
|
|
|
| 168 |
parser.add_argument("--device", type=str, default="cpu", help="running on cpu only!, default=False")
|
|
|
|
| 169 |
args = parser.parse_args()
|
| 170 |
|
| 171 |
# cfg
|
| 172 |
config_file = args.config # change the path of the model config file
|
| 173 |
grounded_checkpoint = args.grounded_checkpoint # change the path of the model
|
| 174 |
sam_checkpoint = args.sam_checkpoint
|
| 175 |
-
task_type = args.task_type
|
| 176 |
image_path = args.input_image
|
| 177 |
-
|
| 178 |
-
inpaint_prompt = args.inpaint_prompt
|
| 179 |
output_dir = args.output_dir
|
| 180 |
box_threshold = args.box_threshold
|
| 181 |
text_threshold = args.box_threshold
|
|
|
|
| 182 |
device = args.device
|
| 183 |
|
| 184 |
-
assert text_prompt, 'text_prompt is not found!'
|
| 185 |
-
|
| 186 |
# make dir
|
| 187 |
os.makedirs(output_dir, exist_ok=True)
|
| 188 |
# load image
|
|
@@ -192,87 +203,79 @@ if __name__ == "__main__":
|
|
| 192 |
|
| 193 |
# visualize raw image
|
| 194 |
image_pil.save(os.path.join(output_dir, "raw_image.jpg"))
|
| 195 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 196 |
# run grounding dino model
|
| 197 |
boxes_filt, pred_phrases = get_grounding_output(
|
| 198 |
-
model, image,
|
| 199 |
)
|
| 200 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 201 |
size = image_pil.size
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 202 |
|
| 203 |
-
|
| 204 |
-
|
| 205 |
-
|
| 206 |
-
|
| 207 |
-
|
| 208 |
-
|
| 209 |
-
|
| 210 |
-
H, W = size[1], size[0]
|
| 211 |
-
for i in range(boxes_filt.size(0)):
|
| 212 |
-
boxes_filt[i] = boxes_filt[i] * torch.Tensor([W, H, W, H])
|
| 213 |
-
boxes_filt[i][:2] -= boxes_filt[i][2:] / 2
|
| 214 |
-
boxes_filt[i][2:] += boxes_filt[i][:2]
|
| 215 |
-
|
| 216 |
-
boxes_filt = boxes_filt.cpu()
|
| 217 |
-
transformed_boxes = predictor.transform.apply_boxes_torch(boxes_filt, image.shape[:2])
|
| 218 |
-
|
| 219 |
-
masks, _, _ = predictor.predict_torch(
|
| 220 |
-
point_coords = None,
|
| 221 |
-
point_labels = None,
|
| 222 |
-
boxes = transformed_boxes,
|
| 223 |
-
multimask_output = False,
|
| 224 |
-
)
|
| 225 |
-
|
| 226 |
-
# masks: [1, 1, 512, 512]
|
| 227 |
-
|
| 228 |
-
if task_type == 'det':
|
| 229 |
-
assert grounded_checkpoint, 'grounded_checkpoint is not found!'
|
| 230 |
-
pred_dict = {
|
| 231 |
-
"boxes": boxes_filt,
|
| 232 |
-
"size": [size[1], size[0]], # H,W
|
| 233 |
-
"labels": pred_phrases,
|
| 234 |
-
}
|
| 235 |
-
# import ipdb; ipdb.set_trace()
|
| 236 |
-
image_with_box = plot_boxes_to_image(image_pil, pred_dict)[0]
|
| 237 |
-
image_with_box.save(os.path.join(output_dir, "grounding_dino_output.jpg"))
|
| 238 |
-
elif task_type == 'seg':
|
| 239 |
-
assert sam_checkpoint, 'sam_checkpoint is not found!'
|
| 240 |
-
|
| 241 |
-
# draw output image
|
| 242 |
-
plt.figure(figsize=(10, 10))
|
| 243 |
-
plt.imshow(image)
|
| 244 |
-
for mask in masks:
|
| 245 |
-
show_mask(mask.cpu().numpy(), plt.gca(), random_color=True)
|
| 246 |
-
for box, label in zip(boxes_filt, pred_phrases):
|
| 247 |
-
show_box(box.numpy(), plt.gca(), label)
|
| 248 |
-
plt.axis('off')
|
| 249 |
-
plt.savefig(os.path.join(output_dir, "grounded_sam_output.jpg"), bbox_inches="tight")
|
| 250 |
-
|
| 251 |
-
elif task_type == 'inpainting':
|
| 252 |
-
assert inpaint_prompt, 'inpaint_prompt is not found!'
|
| 253 |
-
# inpainting pipeline
|
| 254 |
-
mask = masks[0][0].cpu().numpy() # simply choose the first mask, which will be refine in the future release
|
| 255 |
-
mask_pil = Image.fromarray(mask)
|
| 256 |
-
image_pil = Image.fromarray(image)
|
| 257 |
-
|
| 258 |
-
pipe = StableDiffusionInpaintPipeline.from_pretrained(
|
| 259 |
-
"runwayml/stable-diffusion-inpainting", torch_dtype=torch.float16
|
| 260 |
-
)
|
| 261 |
-
pipe = pipe.to("cuda")
|
| 262 |
-
|
| 263 |
-
# prompt = "A sofa, high quality, detailed"
|
| 264 |
-
image = pipe(prompt=inpaint_prompt, image=image_pil, mask_image=mask_pil).images[0]
|
| 265 |
-
image.save(os.path.join(output_dir, "grounded_sam_inpainting_output.jpg"))
|
| 266 |
-
|
| 267 |
-
# draw output image
|
| 268 |
-
# plt.figure(figsize=(10, 10))
|
| 269 |
-
# plt.imshow(image)
|
| 270 |
-
# for mask in masks:
|
| 271 |
-
# show_mask(mask.cpu().numpy(), plt.gca(), random_color=True)
|
| 272 |
-
# for box, label in zip(boxes_filt, pred_phrases):
|
| 273 |
-
# show_box(box.numpy(), plt.gca(), label)
|
| 274 |
-
# plt.axis('off')
|
| 275 |
-
# plt.savefig(os.path.join(output_dir, "grounded_sam_output.jpg"), bbox_inches="tight")
|
| 276 |
else:
|
| 277 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 278 |
|
|
|
|
| 1 |
import argparse
|
| 2 |
import os
|
| 3 |
+
from warnings import warn
|
| 4 |
|
| 5 |
import numpy as np
|
| 6 |
import torch
|
|
|
|
| 27 |
from io import BytesIO
|
| 28 |
from diffusers import StableDiffusionInpaintPipeline
|
| 29 |
|
| 30 |
+
# whisper
|
| 31 |
+
import whisper
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 32 |
|
| 33 |
+
# ChatGPT
|
| 34 |
+
import openai
|
| 35 |
|
|
|
|
| 36 |
|
| 37 |
def load_image(image_path):
|
| 38 |
# load image
|
|
|
|
| 110 |
w, h = box[2] - box[0], box[3] - box[1]
|
| 111 |
ax.add_patch(plt.Rectangle((x0, y0), w, h, edgecolor='green', facecolor=(0,0,0,0), lw=2))
|
| 112 |
ax.text(x0, y0, label)
|
| 113 |
+
|
| 114 |
+
|
| 115 |
+
def speech_recognition(speech_file, model):
|
| 116 |
+
# whisper
|
| 117 |
+
# load audio and pad/trim it to fit 30 seconds
|
| 118 |
+
audio = whisper.load_audio(speech_file)
|
| 119 |
+
audio = whisper.pad_or_trim(audio)
|
| 120 |
+
|
| 121 |
+
# make log-Mel spectrogram and move to the same device as the model
|
| 122 |
+
mel = whisper.log_mel_spectrogram(audio).to(model.device)
|
| 123 |
+
|
| 124 |
+
# detect the spoken language
|
| 125 |
+
_, probs = model.detect_language(mel)
|
| 126 |
+
speech_language = max(probs, key=probs.get)
|
| 127 |
+
|
| 128 |
+
# decode the audio
|
| 129 |
+
options = whisper.DecodingOptions()
|
| 130 |
+
result = whisper.decode(model, mel, options)
|
| 131 |
+
|
| 132 |
+
# print the recognized text
|
| 133 |
+
speech_text = result.text
|
| 134 |
+
return speech_text, speech_language
|
| 135 |
+
|
| 136 |
+
|
| 137 |
+
def filter_prompts_with_chatgpt(caption, max_tokens=100, model="gpt-3.5-turbo"):
|
| 138 |
+
prompt = [
|
| 139 |
+
{
|
| 140 |
+
'role': 'system',
|
| 141 |
+
'content': f"Extract the main object to be replaced and marked it as 'main_object', " + \
|
| 142 |
+
f"Extract the remaining part as 'other prompt' " + \
|
| 143 |
+
f"Return (main_object, other prompt)" + \
|
| 144 |
+
f'Given caption: {caption}.'
|
| 145 |
+
}
|
| 146 |
+
]
|
| 147 |
+
response = openai.ChatCompletion.create(model=model, messages=prompt, temperature=0.6, max_tokens=max_tokens)
|
| 148 |
+
reply = response['choices'][0]['message']['content']
|
| 149 |
+
try:
|
| 150 |
+
det_prompt, inpaint_prompt = reply.split('\n')[0].split(':')[-1].strip(), reply.split('\n')[1].split(':')[-1].strip()
|
| 151 |
+
except:
|
| 152 |
+
warn(f"Failed to extract tags from caption") # use caption as det_prompt, inpaint_prompt
|
| 153 |
+
det_prompt, inpaint_prompt = caption, caption
|
| 154 |
+
return det_prompt, inpaint_prompt
|
| 155 |
|
| 156 |
|
| 157 |
if __name__ == "__main__":
|
|
|
|
| 162 |
"--grounded_checkpoint", type=str, required=True, help="path to checkpoint file"
|
| 163 |
)
|
| 164 |
parser.add_argument(
|
| 165 |
+
"--sam_checkpoint", type=str, required=True, help="path to checkpoint file"
|
| 166 |
)
|
|
|
|
| 167 |
parser.add_argument("--input_image", type=str, required=True, help="path to image file")
|
|
|
|
|
|
|
| 168 |
parser.add_argument(
|
| 169 |
"--output_dir", "-o", type=str, default="outputs", required=True, help="output directory"
|
| 170 |
)
|
| 171 |
+
parser.add_argument("--det_speech_file", type=str, help="grounding speech file")
|
| 172 |
+
parser.add_argument("--inpaint_speech_file", type=str, help="inpaint speech file")
|
| 173 |
+
parser.add_argument("--prompt_speech_file", type=str, help="prompt speech file, no need to provide det_speech_file")
|
| 174 |
+
parser.add_argument("--enable_chatgpt", action="store_true", help="enable chatgpt")
|
| 175 |
+
parser.add_argument("--openai_key", type=str, help="key for chatgpt")
|
| 176 |
+
parser.add_argument("--openai_proxy", default=None, type=str, help="proxy for chatgpt")
|
| 177 |
+
parser.add_argument("--whisper_model", type=str, default="small", help="whisper model version: tiny, base, small, medium, large")
|
| 178 |
parser.add_argument("--box_threshold", type=float, default=0.3, help="box threshold")
|
| 179 |
parser.add_argument("--text_threshold", type=float, default=0.25, help="text threshold")
|
| 180 |
+
parser.add_argument("--inpaint_mode", type=str, default="first", help="inpaint mode")
|
| 181 |
parser.add_argument("--device", type=str, default="cpu", help="running on cpu only!, default=False")
|
| 182 |
+
parser.add_argument("--prompt_extra", type=str, default=" high resolution, real scene", help="extra prompt for inpaint")
|
| 183 |
args = parser.parse_args()
|
| 184 |
|
| 185 |
# cfg
|
| 186 |
config_file = args.config # change the path of the model config file
|
| 187 |
grounded_checkpoint = args.grounded_checkpoint # change the path of the model
|
| 188 |
sam_checkpoint = args.sam_checkpoint
|
|
|
|
| 189 |
image_path = args.input_image
|
| 190 |
+
|
|
|
|
| 191 |
output_dir = args.output_dir
|
| 192 |
box_threshold = args.box_threshold
|
| 193 |
text_threshold = args.box_threshold
|
| 194 |
+
inpaint_mode = args.inpaint_mode
|
| 195 |
device = args.device
|
| 196 |
|
|
|
|
|
|
|
| 197 |
# make dir
|
| 198 |
os.makedirs(output_dir, exist_ok=True)
|
| 199 |
# load image
|
|
|
|
| 203 |
|
| 204 |
# visualize raw image
|
| 205 |
image_pil.save(os.path.join(output_dir, "raw_image.jpg"))
|
| 206 |
+
|
| 207 |
+
# recognize speech
|
| 208 |
+
whisper_model = whisper.load_model(args.whisper_model)
|
| 209 |
+
|
| 210 |
+
if args.enable_chatgpt:
|
| 211 |
+
openai.api_key = args.openai_key
|
| 212 |
+
if args.openai_proxy:
|
| 213 |
+
openai.proxy = {"http": args.openai_proxy, "https": args.openai_proxy}
|
| 214 |
+
speech_text, _ = speech_recognition(args.prompt_speech_file, whisper_model)
|
| 215 |
+
det_prompt, inpaint_prompt = filter_prompts_with_chatgpt(speech_text)
|
| 216 |
+
inpaint_prompt += args.prompt_extra
|
| 217 |
+
print(f"det_prompt: {det_prompt}, inpaint_prompt: {inpaint_prompt}")
|
| 218 |
+
else:
|
| 219 |
+
det_prompt, det_speech_language = speech_recognition(args.det_speech_file, whisper_model)
|
| 220 |
+
inpaint_prompt, inpaint_speech_language = speech_recognition(args.inpaint_speech_file, whisper_model)
|
| 221 |
+
print(f"det_prompt: {det_prompt}, using language: {det_speech_language}")
|
| 222 |
+
print(f"inpaint_prompt: {inpaint_prompt}, using language: {inpaint_speech_language}")
|
| 223 |
+
|
| 224 |
# run grounding dino model
|
| 225 |
boxes_filt, pred_phrases = get_grounding_output(
|
| 226 |
+
model, image, det_prompt, box_threshold, text_threshold, device=device
|
| 227 |
)
|
| 228 |
|
| 229 |
+
# initialize SAM
|
| 230 |
+
predictor = SamPredictor(build_sam(checkpoint=sam_checkpoint))
|
| 231 |
+
image = cv2.imread(image_path)
|
| 232 |
+
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
| 233 |
+
predictor.set_image(image)
|
| 234 |
+
|
| 235 |
size = image_pil.size
|
| 236 |
+
H, W = size[1], size[0]
|
| 237 |
+
for i in range(boxes_filt.size(0)):
|
| 238 |
+
boxes_filt[i] = boxes_filt[i] * torch.Tensor([W, H, W, H])
|
| 239 |
+
boxes_filt[i][:2] -= boxes_filt[i][2:] / 2
|
| 240 |
+
boxes_filt[i][2:] += boxes_filt[i][:2]
|
| 241 |
+
|
| 242 |
+
boxes_filt = boxes_filt.cpu()
|
| 243 |
+
transformed_boxes = predictor.transform.apply_boxes_torch(boxes_filt, image.shape[:2])
|
| 244 |
+
|
| 245 |
+
masks, _, _ = predictor.predict_torch(
|
| 246 |
+
point_coords = None,
|
| 247 |
+
point_labels = None,
|
| 248 |
+
boxes = transformed_boxes,
|
| 249 |
+
multimask_output = False,
|
| 250 |
+
)
|
| 251 |
|
| 252 |
+
# masks: [1, 1, 512, 512]
|
| 253 |
+
|
| 254 |
+
# inpainting pipeline
|
| 255 |
+
if inpaint_mode == 'merge':
|
| 256 |
+
masks = torch.sum(masks, dim=0).unsqueeze(0)
|
| 257 |
+
masks = torch.where(masks > 0, True, False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 258 |
else:
|
| 259 |
+
mask = masks[0][0].cpu().numpy() # simply choose the first mask, which will be refine in the future release
|
| 260 |
+
mask_pil = Image.fromarray(mask)
|
| 261 |
+
image_pil = Image.fromarray(image)
|
| 262 |
+
|
| 263 |
+
pipe = StableDiffusionInpaintPipeline.from_pretrained(
|
| 264 |
+
"runwayml/stable-diffusion-inpainting", torch_dtype=torch.float16
|
| 265 |
+
)
|
| 266 |
+
pipe = pipe.to("cuda")
|
| 267 |
+
|
| 268 |
+
# prompt = "A sofa, high quality, detailed"
|
| 269 |
+
image = pipe(prompt=inpaint_prompt, image=image_pil, mask_image=mask_pil).images[0]
|
| 270 |
+
image.save(os.path.join(output_dir, "grounded_sam_inpainting_output.jpg"))
|
| 271 |
+
|
| 272 |
+
# draw output image
|
| 273 |
+
# plt.figure(figsize=(10, 10))
|
| 274 |
+
# plt.imshow(image)
|
| 275 |
+
# for mask in masks:
|
| 276 |
+
# show_mask(mask.cpu().numpy(), plt.gca(), random_color=True)
|
| 277 |
+
# for box, label in zip(boxes_filt, pred_phrases):
|
| 278 |
+
# show_box(box.numpy(), plt.gca(), label)
|
| 279 |
+
# plt.axis('off')
|
| 280 |
+
# plt.savefig(os.path.join(output_dir, "grounded_sam_output.jpg"), bbox_inches="tight")
|
| 281 |
|