Spaces:
Runtime error
Runtime error
liuyizhang
commited on
Commit
·
4de87d2
1
Parent(s):
9546498
delete files
Browse files- automatic_label_demo.py +0 -315
- grounded_sam.ipynb +0 -0
- grounding_dino_demo.py +0 -171
automatic_label_demo.py
DELETED
|
@@ -1,315 +0,0 @@
|
|
| 1 |
-
import argparse
|
| 2 |
-
import os
|
| 3 |
-
import copy
|
| 4 |
-
|
| 5 |
-
import numpy as np
|
| 6 |
-
import json
|
| 7 |
-
import torch
|
| 8 |
-
import torchvision
|
| 9 |
-
from PIL import Image, ImageDraw, ImageFont
|
| 10 |
-
|
| 11 |
-
# Grounding DINO
|
| 12 |
-
import GroundingDINO.groundingdino.datasets.transforms as T
|
| 13 |
-
from GroundingDINO.groundingdino.models import build_model
|
| 14 |
-
from GroundingDINO.groundingdino.util import box_ops
|
| 15 |
-
from GroundingDINO.groundingdino.util.slconfig import SLConfig
|
| 16 |
-
from GroundingDINO.groundingdino.util.utils import clean_state_dict, get_phrases_from_posmap
|
| 17 |
-
|
| 18 |
-
# segment anything
|
| 19 |
-
from segment_anything import build_sam, SamPredictor
|
| 20 |
-
import cv2
|
| 21 |
-
import numpy as np
|
| 22 |
-
import matplotlib.pyplot as plt
|
| 23 |
-
|
| 24 |
-
# BLIP
|
| 25 |
-
from transformers import BlipProcessor, BlipForConditionalGeneration
|
| 26 |
-
|
| 27 |
-
# ChatGPT
|
| 28 |
-
import openai
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
def load_image(image_path):
|
| 32 |
-
# load image
|
| 33 |
-
image_pil = Image.open(image_path).convert("RGB") # load image
|
| 34 |
-
|
| 35 |
-
transform = T.Compose(
|
| 36 |
-
[
|
| 37 |
-
T.RandomResize([800], max_size=1333),
|
| 38 |
-
T.ToTensor(),
|
| 39 |
-
T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
|
| 40 |
-
]
|
| 41 |
-
)
|
| 42 |
-
image, _ = transform(image_pil, None) # 3, h, w
|
| 43 |
-
return image_pil, image
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
def generate_caption(raw_image, device):
|
| 47 |
-
# unconditional image captioning
|
| 48 |
-
if device == "cuda":
|
| 49 |
-
inputs = processor(raw_image, return_tensors="pt").to("cuda", torch.float16)
|
| 50 |
-
else:
|
| 51 |
-
inputs = processor(raw_image, return_tensors="pt")
|
| 52 |
-
out = blip_model.generate(**inputs)
|
| 53 |
-
caption = processor.decode(out[0], skip_special_tokens=True)
|
| 54 |
-
return caption
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
def generate_tags(caption, split=',', max_tokens=100, model="gpt-3.5-turbo"):
|
| 58 |
-
prompt = [
|
| 59 |
-
{
|
| 60 |
-
'role': 'system',
|
| 61 |
-
'content': 'Extract the unique nouns in the caption. Remove all the adjectives. ' + \
|
| 62 |
-
f'List the nouns in singular form. Split them by "{split} ". ' + \
|
| 63 |
-
f'Caption: {caption}.'
|
| 64 |
-
}
|
| 65 |
-
]
|
| 66 |
-
response = openai.ChatCompletion.create(model=model, messages=prompt, temperature=0.6, max_tokens=max_tokens)
|
| 67 |
-
reply = response['choices'][0]['message']['content']
|
| 68 |
-
# sometimes return with "noun: xxx, xxx, xxx"
|
| 69 |
-
tags = reply.split(':')[-1].strip()
|
| 70 |
-
return tags
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
def check_caption(caption, pred_phrases, max_tokens=100, model="gpt-3.5-turbo"):
|
| 74 |
-
object_list = [obj.split('(')[0] for obj in pred_phrases]
|
| 75 |
-
object_num = []
|
| 76 |
-
for obj in set(object_list):
|
| 77 |
-
object_num.append(f'{object_list.count(obj)} {obj}')
|
| 78 |
-
object_num = ', '.join(object_num)
|
| 79 |
-
print(f"Correct object number: {object_num}")
|
| 80 |
-
|
| 81 |
-
prompt = [
|
| 82 |
-
{
|
| 83 |
-
'role': 'system',
|
| 84 |
-
'content': 'Revise the number in the caption if it is wrong. ' + \
|
| 85 |
-
f'Caption: {caption}. ' + \
|
| 86 |
-
f'True object number: {object_num}. ' + \
|
| 87 |
-
'Only give the revised caption: '
|
| 88 |
-
}
|
| 89 |
-
]
|
| 90 |
-
response = openai.ChatCompletion.create(model=model, messages=prompt, temperature=0.6, max_tokens=max_tokens)
|
| 91 |
-
reply = response['choices'][0]['message']['content']
|
| 92 |
-
# sometimes return with "Caption: xxx, xxx, xxx"
|
| 93 |
-
caption = reply.split(':')[-1].strip()
|
| 94 |
-
return caption
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
def load_model(model_config_path, model_checkpoint_path, device):
|
| 98 |
-
args = SLConfig.fromfile(model_config_path)
|
| 99 |
-
args.device = device
|
| 100 |
-
model = build_model(args)
|
| 101 |
-
checkpoint = torch.load(model_checkpoint_path, map_location="cpu")
|
| 102 |
-
load_res = model.load_state_dict(clean_state_dict(checkpoint["model"]), strict=False)
|
| 103 |
-
print(load_res)
|
| 104 |
-
_ = model.eval()
|
| 105 |
-
return model
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
def get_grounding_output(model, image, caption, box_threshold, text_threshold,device="cpu"):
|
| 109 |
-
caption = caption.lower()
|
| 110 |
-
caption = caption.strip()
|
| 111 |
-
if not caption.endswith("."):
|
| 112 |
-
caption = caption + "."
|
| 113 |
-
model = model.to(device)
|
| 114 |
-
image = image.to(device)
|
| 115 |
-
with torch.no_grad():
|
| 116 |
-
outputs = model(image[None], captions=[caption])
|
| 117 |
-
logits = outputs["pred_logits"].cpu().sigmoid()[0] # (nq, 256)
|
| 118 |
-
boxes = outputs["pred_boxes"].cpu()[0] # (nq, 4)
|
| 119 |
-
logits.shape[0]
|
| 120 |
-
|
| 121 |
-
# filter output
|
| 122 |
-
logits_filt = logits.clone()
|
| 123 |
-
boxes_filt = boxes.clone()
|
| 124 |
-
filt_mask = logits_filt.max(dim=1)[0] > box_threshold
|
| 125 |
-
logits_filt = logits_filt[filt_mask] # num_filt, 256
|
| 126 |
-
boxes_filt = boxes_filt[filt_mask] # num_filt, 4
|
| 127 |
-
logits_filt.shape[0]
|
| 128 |
-
|
| 129 |
-
# get phrase
|
| 130 |
-
tokenlizer = model.tokenizer
|
| 131 |
-
tokenized = tokenlizer(caption)
|
| 132 |
-
# build pred
|
| 133 |
-
pred_phrases = []
|
| 134 |
-
scores = []
|
| 135 |
-
for logit, box in zip(logits_filt, boxes_filt):
|
| 136 |
-
pred_phrase = get_phrases_from_posmap(logit > text_threshold, tokenized, tokenlizer)
|
| 137 |
-
pred_phrases.append(pred_phrase + f"({str(logit.max().item())[:4]})")
|
| 138 |
-
scores.append(logit.max().item())
|
| 139 |
-
|
| 140 |
-
return boxes_filt, torch.Tensor(scores), pred_phrases
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
def show_mask(mask, ax, random_color=False):
|
| 144 |
-
if random_color:
|
| 145 |
-
color = np.concatenate([np.random.random(3), np.array([0.6])], axis=0)
|
| 146 |
-
else:
|
| 147 |
-
color = np.array([30/255, 144/255, 255/255, 0.6])
|
| 148 |
-
h, w = mask.shape[-2:]
|
| 149 |
-
mask_image = mask.reshape(h, w, 1) * color.reshape(1, 1, -1)
|
| 150 |
-
ax.imshow(mask_image)
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
def show_box(box, ax, label):
|
| 154 |
-
x0, y0 = box[0], box[1]
|
| 155 |
-
w, h = box[2] - box[0], box[3] - box[1]
|
| 156 |
-
ax.add_patch(plt.Rectangle((x0, y0), w, h, edgecolor='green', facecolor=(0,0,0,0), lw=2))
|
| 157 |
-
ax.text(x0, y0, label)
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
def save_mask_data(output_dir, caption, mask_list, box_list, label_list):
|
| 161 |
-
value = 0 # 0 for background
|
| 162 |
-
|
| 163 |
-
mask_img = torch.zeros(mask_list.shape[-2:])
|
| 164 |
-
for idx, mask in enumerate(mask_list):
|
| 165 |
-
mask_img[mask.cpu().numpy()[0] == True] = value + idx + 1
|
| 166 |
-
plt.figure(figsize=(10, 10))
|
| 167 |
-
plt.imshow(mask_img.numpy())
|
| 168 |
-
plt.axis('off')
|
| 169 |
-
plt.savefig(os.path.join(output_dir, 'mask.jpg'), bbox_inches="tight", dpi=300, pad_inches=0.0)
|
| 170 |
-
|
| 171 |
-
json_data = {
|
| 172 |
-
'caption': caption,
|
| 173 |
-
'mask':[{
|
| 174 |
-
'value': value,
|
| 175 |
-
'label': 'background'
|
| 176 |
-
}]
|
| 177 |
-
}
|
| 178 |
-
for label, box in zip(label_list, box_list):
|
| 179 |
-
value += 1
|
| 180 |
-
name, logit = label.split('(')
|
| 181 |
-
logit = logit[:-1] # the last is ')'
|
| 182 |
-
json_data['mask'].append({
|
| 183 |
-
'value': value,
|
| 184 |
-
'label': name,
|
| 185 |
-
'logit': float(logit),
|
| 186 |
-
'box': box.numpy().tolist(),
|
| 187 |
-
})
|
| 188 |
-
with open(os.path.join(output_dir, 'label.json'), 'w') as f:
|
| 189 |
-
json.dump(json_data, f)
|
| 190 |
-
|
| 191 |
-
|
| 192 |
-
if __name__ == "__main__":
|
| 193 |
-
|
| 194 |
-
parser = argparse.ArgumentParser("Grounded-Segment-Anything Demo", add_help=True)
|
| 195 |
-
parser.add_argument("--config", type=str, required=True, help="path to config file")
|
| 196 |
-
parser.add_argument(
|
| 197 |
-
"--grounded_checkpoint", type=str, required=True, help="path to checkpoint file"
|
| 198 |
-
)
|
| 199 |
-
parser.add_argument(
|
| 200 |
-
"--sam_checkpoint", type=str, required=True, help="path to checkpoint file"
|
| 201 |
-
)
|
| 202 |
-
parser.add_argument("--input_image", type=str, required=True, help="path to image file")
|
| 203 |
-
parser.add_argument("--split", default=",", type=str, help="split for text prompt")
|
| 204 |
-
parser.add_argument("--openai_key", type=str, required=True, help="key for chatgpt")
|
| 205 |
-
parser.add_argument("--openai_proxy", default=None, type=str, help="proxy for chatgpt")
|
| 206 |
-
parser.add_argument(
|
| 207 |
-
"--output_dir", "-o", type=str, default="outputs", required=True, help="output directory"
|
| 208 |
-
)
|
| 209 |
-
|
| 210 |
-
parser.add_argument("--box_threshold", type=float, default=0.25, help="box threshold")
|
| 211 |
-
parser.add_argument("--text_threshold", type=float, default=0.2, help="text threshold")
|
| 212 |
-
parser.add_argument("--iou_threshold", type=float, default=0.5, help="iou threshold")
|
| 213 |
-
|
| 214 |
-
parser.add_argument("--device", type=str, default="cpu", help="running on cpu only!, default=False")
|
| 215 |
-
args = parser.parse_args()
|
| 216 |
-
|
| 217 |
-
# cfg
|
| 218 |
-
config_file = args.config # change the path of the model config file
|
| 219 |
-
grounded_checkpoint = args.grounded_checkpoint # change the path of the model
|
| 220 |
-
sam_checkpoint = args.sam_checkpoint
|
| 221 |
-
image_path = args.input_image
|
| 222 |
-
split = args.split
|
| 223 |
-
openai_key = args.openai_key
|
| 224 |
-
openai_proxy = args.openai_proxy
|
| 225 |
-
output_dir = args.output_dir
|
| 226 |
-
box_threshold = args.box_threshold
|
| 227 |
-
text_threshold = args.text_threshold
|
| 228 |
-
iou_threshold = args.iou_threshold
|
| 229 |
-
device = args.device
|
| 230 |
-
|
| 231 |
-
openai.api_key = openai_key
|
| 232 |
-
if openai_proxy:
|
| 233 |
-
openai.proxy = {"http": openai_proxy, "https": openai_proxy}
|
| 234 |
-
|
| 235 |
-
# make dir
|
| 236 |
-
os.makedirs(output_dir, exist_ok=True)
|
| 237 |
-
# load image
|
| 238 |
-
image_pil, image = load_image(image_path)
|
| 239 |
-
# load model
|
| 240 |
-
model = load_model(config_file, grounded_checkpoint, device=device)
|
| 241 |
-
|
| 242 |
-
# visualize raw image
|
| 243 |
-
image_pil.save(os.path.join(output_dir, "raw_image.jpg"))
|
| 244 |
-
|
| 245 |
-
# generate caption and tags
|
| 246 |
-
# use Tag2Text can generate better captions
|
| 247 |
-
# https://huggingface.co/spaces/xinyu1205/Tag2Text
|
| 248 |
-
# but there are some bugs...
|
| 249 |
-
processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-large")
|
| 250 |
-
if device == "cuda":
|
| 251 |
-
blip_model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-large", torch_dtype=torch.float16).to("cuda")
|
| 252 |
-
else:
|
| 253 |
-
blip_model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-large")
|
| 254 |
-
caption = generate_caption(image_pil, device=device)
|
| 255 |
-
# Currently ", " is better for detecting single tags
|
| 256 |
-
# while ". " is a little worse in some case
|
| 257 |
-
text_prompt = generate_tags(caption, split=split)
|
| 258 |
-
print(f"Caption: {caption}")
|
| 259 |
-
print(f"Tags: {text_prompt}")
|
| 260 |
-
|
| 261 |
-
# run grounding dino model
|
| 262 |
-
boxes_filt, scores, pred_phrases = get_grounding_output(
|
| 263 |
-
model, image, text_prompt, box_threshold, text_threshold, device=device
|
| 264 |
-
)
|
| 265 |
-
|
| 266 |
-
# initialize SAM
|
| 267 |
-
sam = build_sam(checkpoint=sam_checkpoint)
|
| 268 |
-
sam.to(device=device)
|
| 269 |
-
predictor = SamPredictor(sam)
|
| 270 |
-
image = cv2.imread(image_path)
|
| 271 |
-
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
| 272 |
-
predictor.set_image(image)
|
| 273 |
-
|
| 274 |
-
size = image_pil.size
|
| 275 |
-
H, W = size[1], size[0]
|
| 276 |
-
for i in range(boxes_filt.size(0)):
|
| 277 |
-
boxes_filt[i] = boxes_filt[i] * torch.Tensor([W, H, W, H])
|
| 278 |
-
boxes_filt[i][:2] -= boxes_filt[i][2:] / 2
|
| 279 |
-
boxes_filt[i][2:] += boxes_filt[i][:2]
|
| 280 |
-
|
| 281 |
-
boxes_filt = boxes_filt.cpu()
|
| 282 |
-
# use NMS to handle overlapped boxes
|
| 283 |
-
print(f"Before NMS: {boxes_filt.shape[0]} boxes")
|
| 284 |
-
nms_idx = torchvision.ops.nms(boxes_filt, scores, iou_threshold).numpy().tolist()
|
| 285 |
-
boxes_filt = boxes_filt[nms_idx]
|
| 286 |
-
pred_phrases = [pred_phrases[idx] for idx in nms_idx]
|
| 287 |
-
print(f"After NMS: {boxes_filt.shape[0]} boxes")
|
| 288 |
-
caption = check_caption(caption, pred_phrases)
|
| 289 |
-
print(f"Revise caption with number: {caption}")
|
| 290 |
-
|
| 291 |
-
transformed_boxes = predictor.transform.apply_boxes_torch(boxes_filt, image.shape[:2]).to(device)
|
| 292 |
-
|
| 293 |
-
masks, _, _ = predictor.predict_torch(
|
| 294 |
-
point_coords = None,
|
| 295 |
-
point_labels = None,
|
| 296 |
-
boxes = transformed_boxes,
|
| 297 |
-
multimask_output = False,
|
| 298 |
-
)
|
| 299 |
-
|
| 300 |
-
# draw output image
|
| 301 |
-
plt.figure(figsize=(10, 10))
|
| 302 |
-
plt.imshow(image)
|
| 303 |
-
for mask in masks:
|
| 304 |
-
show_mask(mask.cpu().numpy(), plt.gca(), random_color=True)
|
| 305 |
-
for box, label in zip(boxes_filt, pred_phrases):
|
| 306 |
-
show_box(box.numpy(), plt.gca(), label)
|
| 307 |
-
|
| 308 |
-
plt.title(caption)
|
| 309 |
-
plt.axis('off')
|
| 310 |
-
plt.savefig(
|
| 311 |
-
os.path.join(output_dir, "automatic_label_output.jpg"),
|
| 312 |
-
bbox_inches="tight", dpi=300, pad_inches=0.0
|
| 313 |
-
)
|
| 314 |
-
|
| 315 |
-
save_mask_data(output_dir, caption, masks, boxes_filt, pred_phrases)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
grounded_sam.ipynb
DELETED
|
The diff for this file is too large to render.
See raw diff
|
|
|
grounding_dino_demo.py
DELETED
|
@@ -1,171 +0,0 @@
|
|
| 1 |
-
import argparse
|
| 2 |
-
import os
|
| 3 |
-
|
| 4 |
-
import numpy as np
|
| 5 |
-
import torch
|
| 6 |
-
from PIL import Image, ImageDraw, ImageFont
|
| 7 |
-
|
| 8 |
-
import GroundingDINO.groundingdino.datasets.transforms as T
|
| 9 |
-
from GroundingDINO.groundingdino.models import build_model
|
| 10 |
-
from GroundingDINO.groundingdino.util import box_ops
|
| 11 |
-
from GroundingDINO.groundingdino.util.slconfig import SLConfig
|
| 12 |
-
from GroundingDINO.groundingdino.util.utils import clean_state_dict, get_phrases_from_posmap
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
def plot_boxes_to_image(image_pil, tgt):
|
| 16 |
-
H, W = tgt["size"]
|
| 17 |
-
boxes = tgt["boxes"]
|
| 18 |
-
labels = tgt["labels"]
|
| 19 |
-
assert len(boxes) == len(labels), "boxes and labels must have same length"
|
| 20 |
-
|
| 21 |
-
draw = ImageDraw.Draw(image_pil)
|
| 22 |
-
mask = Image.new("L", image_pil.size, 0)
|
| 23 |
-
mask_draw = ImageDraw.Draw(mask)
|
| 24 |
-
|
| 25 |
-
# draw boxes and masks
|
| 26 |
-
for box, label in zip(boxes, labels):
|
| 27 |
-
# from 0..1 to 0..W, 0..H
|
| 28 |
-
box = box * torch.Tensor([W, H, W, H])
|
| 29 |
-
# from xywh to xyxy
|
| 30 |
-
box[:2] -= box[2:] / 2
|
| 31 |
-
box[2:] += box[:2]
|
| 32 |
-
# random color
|
| 33 |
-
color = tuple(np.random.randint(0, 255, size=3).tolist())
|
| 34 |
-
# draw
|
| 35 |
-
x0, y0, x1, y1 = box
|
| 36 |
-
x0, y0, x1, y1 = int(x0), int(y0), int(x1), int(y1)
|
| 37 |
-
|
| 38 |
-
draw.rectangle([x0, y0, x1, y1], outline=color, width=6)
|
| 39 |
-
# draw.text((x0, y0), str(label), fill=color)
|
| 40 |
-
|
| 41 |
-
font = ImageFont.load_default()
|
| 42 |
-
if hasattr(font, "getbbox"):
|
| 43 |
-
bbox = draw.textbbox((x0, y0), str(label), font)
|
| 44 |
-
else:
|
| 45 |
-
w, h = draw.textsize(str(label), font)
|
| 46 |
-
bbox = (x0, y0, w + x0, y0 + h)
|
| 47 |
-
# bbox = draw.textbbox((x0, y0), str(label))
|
| 48 |
-
draw.rectangle(bbox, fill=color)
|
| 49 |
-
draw.text((x0, y0), str(label), fill="white")
|
| 50 |
-
|
| 51 |
-
mask_draw.rectangle([x0, y0, x1, y1], fill=255, width=6)
|
| 52 |
-
|
| 53 |
-
return image_pil, mask
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
def load_image(image_path):
|
| 57 |
-
# load image
|
| 58 |
-
image_pil = Image.open(image_path).convert("RGB") # load image
|
| 59 |
-
|
| 60 |
-
transform = T.Compose(
|
| 61 |
-
[
|
| 62 |
-
T.RandomResize([800], max_size=1333),
|
| 63 |
-
T.ToTensor(),
|
| 64 |
-
T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
|
| 65 |
-
]
|
| 66 |
-
)
|
| 67 |
-
image, _ = transform(image_pil, None) # 3, h, w
|
| 68 |
-
return image_pil, image
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
def load_model(model_config_path, model_checkpoint_path, device="cpu"):
|
| 72 |
-
args = SLConfig.fromfile(model_config_path)
|
| 73 |
-
args.device = device
|
| 74 |
-
model = build_model(args)
|
| 75 |
-
checkpoint = torch.load(model_checkpoint_path, map_location="cpu")
|
| 76 |
-
load_res = model.load_state_dict(clean_state_dict(checkpoint["model"]), strict=False)
|
| 77 |
-
print(load_res)
|
| 78 |
-
_ = model.eval()
|
| 79 |
-
return model
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
def get_grounding_output(model, image, caption, box_threshold, text_threshold, with_logits=True, device="cpu"):
|
| 83 |
-
caption = caption.lower()
|
| 84 |
-
caption = caption.strip()
|
| 85 |
-
if not caption.endswith("."):
|
| 86 |
-
caption = caption + "."
|
| 87 |
-
model = model.to(device)
|
| 88 |
-
image = image.to(device)
|
| 89 |
-
with torch.no_grad():
|
| 90 |
-
outputs = model(image[None], captions=[caption])
|
| 91 |
-
logits = outputs["pred_logits"].cpu().sigmoid()[0] # (nq, 256)
|
| 92 |
-
boxes = outputs["pred_boxes"].cpu()[0] # (nq, 4)
|
| 93 |
-
logits.shape[0]
|
| 94 |
-
|
| 95 |
-
# filter output
|
| 96 |
-
logits_filt = logits.clone()
|
| 97 |
-
boxes_filt = boxes.clone()
|
| 98 |
-
filt_mask = logits_filt.max(dim=1)[0] > box_threshold
|
| 99 |
-
logits_filt = logits_filt[filt_mask] # num_filt, 256
|
| 100 |
-
boxes_filt = boxes_filt[filt_mask] # num_filt, 4
|
| 101 |
-
logits_filt.shape[0]
|
| 102 |
-
|
| 103 |
-
# get phrase
|
| 104 |
-
tokenlizer = model.tokenizer
|
| 105 |
-
tokenized = tokenlizer(caption)
|
| 106 |
-
# build pred
|
| 107 |
-
pred_phrases = []
|
| 108 |
-
for logit, box in zip(logits_filt, boxes_filt):
|
| 109 |
-
pred_phrase = get_phrases_from_posmap(logit > text_threshold, tokenized, tokenlizer)
|
| 110 |
-
if with_logits:
|
| 111 |
-
pred_phrases.append(pred_phrase + f"({str(logit.max().item())[:4]})")
|
| 112 |
-
else:
|
| 113 |
-
pred_phrases.append(pred_phrase)
|
| 114 |
-
|
| 115 |
-
return boxes_filt, pred_phrases
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
if __name__ == "__main__":
|
| 119 |
-
|
| 120 |
-
parser = argparse.ArgumentParser("Grounding DINO example", add_help=True)
|
| 121 |
-
parser.add_argument("--config", type=str, required=True, help="path to config file")
|
| 122 |
-
parser.add_argument(
|
| 123 |
-
"--grounded_checkpoint", type=str, required=True, help="path to checkpoint file"
|
| 124 |
-
)
|
| 125 |
-
parser.add_argument("--input_image", type=str, required=True, help="path to image file")
|
| 126 |
-
parser.add_argument("--text_prompt", type=str, required=True, help="text prompt")
|
| 127 |
-
parser.add_argument(
|
| 128 |
-
"--output_dir", "-o", type=str, default="outputs", required=True, help="output directory"
|
| 129 |
-
)
|
| 130 |
-
|
| 131 |
-
parser.add_argument("--box_threshold", type=float, default=0.3, help="box threshold")
|
| 132 |
-
parser.add_argument("--text_threshold", type=float, default=0.25, help="text threshold")
|
| 133 |
-
|
| 134 |
-
parser.add_argument("--device", type=str, default="cpu", help="running on cpu only!, default=False")
|
| 135 |
-
args = parser.parse_args()
|
| 136 |
-
|
| 137 |
-
# cfg
|
| 138 |
-
config_file = args.config # change the path of the model config file
|
| 139 |
-
grounded_checkpoint = args.grounded_checkpoint # change the path of the model
|
| 140 |
-
image_path = args.input_image
|
| 141 |
-
text_prompt = args.text_prompt
|
| 142 |
-
output_dir = args.output_dir
|
| 143 |
-
box_threshold = args.box_threshold
|
| 144 |
-
text_threshold = args.box_threshold
|
| 145 |
-
device = args.device
|
| 146 |
-
|
| 147 |
-
# make dir
|
| 148 |
-
os.makedirs(output_dir, exist_ok=True)
|
| 149 |
-
# load image
|
| 150 |
-
image_pil, image = load_image(image_path)
|
| 151 |
-
# load model
|
| 152 |
-
model = load_model(config_file, grounded_checkpoint, device=device)
|
| 153 |
-
|
| 154 |
-
# visualize raw image
|
| 155 |
-
# image_pil.save(os.path.join(output_dir, "raw_image.jpg"))
|
| 156 |
-
|
| 157 |
-
# run model
|
| 158 |
-
boxes_filt, pred_phrases = get_grounding_output(
|
| 159 |
-
model, image, text_prompt, box_threshold, text_threshold, device=device
|
| 160 |
-
)
|
| 161 |
-
|
| 162 |
-
# visualize pred
|
| 163 |
-
size = image_pil.size
|
| 164 |
-
pred_dict = {
|
| 165 |
-
"boxes": boxes_filt,
|
| 166 |
-
"size": [size[1], size[0]], # H,W
|
| 167 |
-
"labels": pred_phrases,
|
| 168 |
-
}
|
| 169 |
-
# import ipdb; ipdb.set_trace()
|
| 170 |
-
image_with_box = plot_boxes_to_image(image_pil, pred_dict)[0]
|
| 171 |
-
image_with_box.save(os.path.join(output_dir, "grounding_dino_output.jpg"))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|