Spaces:
				
			
			
	
			
			
		Runtime error
		
	
	
	
			
			
	
	
	
	
		
		
		Runtime error
		
	
		liuyizhang
		
	commited on
		
		
					Commit 
							
							·
						
						38764b8
	
1
								Parent(s):
							
							88b6248
								
app transforms.py
Browse files- GroundingDINO/groundingdino/transforms.py +311 -0
- app.py +1 -1
    	
        GroundingDINO/groundingdino/transforms.py
    ADDED
    
    | @@ -0,0 +1,311 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
         | 
| 2 | 
            +
            """
         | 
| 3 | 
            +
            Transforms and data augmentation for both image + bbox.
         | 
| 4 | 
            +
            """
         | 
| 5 | 
            +
            import os
         | 
| 6 | 
            +
            import random
         | 
| 7 | 
            +
             | 
| 8 | 
            +
            import PIL
         | 
| 9 | 
            +
            import torch
         | 
| 10 | 
            +
            import torchvision.transforms as T
         | 
| 11 | 
            +
            import torchvision.transforms.functional as F
         | 
| 12 | 
            +
             | 
| 13 | 
            +
            from util.box_ops import box_xyxy_to_cxcywh
         | 
| 14 | 
            +
            from util.misc import interpolate
         | 
| 15 | 
            +
             | 
| 16 | 
            +
             | 
| 17 | 
            +
            def crop(image, target, region):
         | 
| 18 | 
            +
                cropped_image = F.crop(image, *region)
         | 
| 19 | 
            +
             | 
| 20 | 
            +
                target = target.copy()
         | 
| 21 | 
            +
                i, j, h, w = region
         | 
| 22 | 
            +
             | 
| 23 | 
            +
                # should we do something wrt the original size?
         | 
| 24 | 
            +
                target["size"] = torch.tensor([h, w])
         | 
| 25 | 
            +
             | 
| 26 | 
            +
                fields = ["labels", "area", "iscrowd", "positive_map"]
         | 
| 27 | 
            +
             | 
| 28 | 
            +
                if "boxes" in target:
         | 
| 29 | 
            +
                    boxes = target["boxes"]
         | 
| 30 | 
            +
                    max_size = torch.as_tensor([w, h], dtype=torch.float32)
         | 
| 31 | 
            +
                    cropped_boxes = boxes - torch.as_tensor([j, i, j, i])
         | 
| 32 | 
            +
                    cropped_boxes = torch.min(cropped_boxes.reshape(-1, 2, 2), max_size)
         | 
| 33 | 
            +
                    cropped_boxes = cropped_boxes.clamp(min=0)
         | 
| 34 | 
            +
                    area = (cropped_boxes[:, 1, :] - cropped_boxes[:, 0, :]).prod(dim=1)
         | 
| 35 | 
            +
                    target["boxes"] = cropped_boxes.reshape(-1, 4)
         | 
| 36 | 
            +
                    target["area"] = area
         | 
| 37 | 
            +
                    fields.append("boxes")
         | 
| 38 | 
            +
             | 
| 39 | 
            +
                if "masks" in target:
         | 
| 40 | 
            +
                    # FIXME should we update the area here if there are no boxes?
         | 
| 41 | 
            +
                    target["masks"] = target["masks"][:, i : i + h, j : j + w]
         | 
| 42 | 
            +
                    fields.append("masks")
         | 
| 43 | 
            +
             | 
| 44 | 
            +
                # remove elements for which the boxes or masks that have zero area
         | 
| 45 | 
            +
                if "boxes" in target or "masks" in target:
         | 
| 46 | 
            +
                    # favor boxes selection when defining which elements to keep
         | 
| 47 | 
            +
                    # this is compatible with previous implementation
         | 
| 48 | 
            +
                    if "boxes" in target:
         | 
| 49 | 
            +
                        cropped_boxes = target["boxes"].reshape(-1, 2, 2)
         | 
| 50 | 
            +
                        keep = torch.all(cropped_boxes[:, 1, :] > cropped_boxes[:, 0, :], dim=1)
         | 
| 51 | 
            +
                    else:
         | 
| 52 | 
            +
                        keep = target["masks"].flatten(1).any(1)
         | 
| 53 | 
            +
             | 
| 54 | 
            +
                    for field in fields:
         | 
| 55 | 
            +
                        if field in target:
         | 
| 56 | 
            +
                            target[field] = target[field][keep]
         | 
| 57 | 
            +
             | 
| 58 | 
            +
                if os.environ.get("IPDB_SHILONG_DEBUG", None) == "INFO":
         | 
| 59 | 
            +
                    # for debug and visualization only.
         | 
| 60 | 
            +
                    if "strings_positive" in target:
         | 
| 61 | 
            +
                        target["strings_positive"] = [
         | 
| 62 | 
            +
                            _i for _i, _j in zip(target["strings_positive"], keep) if _j
         | 
| 63 | 
            +
                        ]
         | 
| 64 | 
            +
             | 
| 65 | 
            +
                return cropped_image, target
         | 
| 66 | 
            +
             | 
| 67 | 
            +
             | 
| 68 | 
            +
            def hflip(image, target):
         | 
| 69 | 
            +
                flipped_image = F.hflip(image)
         | 
| 70 | 
            +
             | 
| 71 | 
            +
                w, h = image.size
         | 
| 72 | 
            +
             | 
| 73 | 
            +
                target = target.copy()
         | 
| 74 | 
            +
                if "boxes" in target:
         | 
| 75 | 
            +
                    boxes = target["boxes"]
         | 
| 76 | 
            +
                    boxes = boxes[:, [2, 1, 0, 3]] * torch.as_tensor([-1, 1, -1, 1]) + torch.as_tensor(
         | 
| 77 | 
            +
                        [w, 0, w, 0]
         | 
| 78 | 
            +
                    )
         | 
| 79 | 
            +
                    target["boxes"] = boxes
         | 
| 80 | 
            +
             | 
| 81 | 
            +
                if "masks" in target:
         | 
| 82 | 
            +
                    target["masks"] = target["masks"].flip(-1)
         | 
| 83 | 
            +
             | 
| 84 | 
            +
                return flipped_image, target
         | 
| 85 | 
            +
             | 
| 86 | 
            +
             | 
| 87 | 
            +
            def resize(image, target, size, max_size=None):
         | 
| 88 | 
            +
                # size can be min_size (scalar) or (w, h) tuple
         | 
| 89 | 
            +
             | 
| 90 | 
            +
                def get_size_with_aspect_ratio(image_size, size, max_size=None):
         | 
| 91 | 
            +
                    w, h = image_size
         | 
| 92 | 
            +
                    if max_size is not None:
         | 
| 93 | 
            +
                        min_original_size = float(min((w, h)))
         | 
| 94 | 
            +
                        max_original_size = float(max((w, h)))
         | 
| 95 | 
            +
                        if max_original_size / min_original_size * size > max_size:
         | 
| 96 | 
            +
                            size = int(round(max_size * min_original_size / max_original_size))
         | 
| 97 | 
            +
             | 
| 98 | 
            +
                    if (w <= h and w == size) or (h <= w and h == size):
         | 
| 99 | 
            +
                        return (h, w)
         | 
| 100 | 
            +
             | 
| 101 | 
            +
                    if w < h:
         | 
| 102 | 
            +
                        ow = size
         | 
| 103 | 
            +
                        oh = int(size * h / w)
         | 
| 104 | 
            +
                    else:
         | 
| 105 | 
            +
                        oh = size
         | 
| 106 | 
            +
                        ow = int(size * w / h)
         | 
| 107 | 
            +
             | 
| 108 | 
            +
                    return (oh, ow)
         | 
| 109 | 
            +
             | 
| 110 | 
            +
                def get_size(image_size, size, max_size=None):
         | 
| 111 | 
            +
                    if isinstance(size, (list, tuple)):
         | 
| 112 | 
            +
                        return size[::-1]
         | 
| 113 | 
            +
                    else:
         | 
| 114 | 
            +
                        return get_size_with_aspect_ratio(image_size, size, max_size)
         | 
| 115 | 
            +
             | 
| 116 | 
            +
                size = get_size(image.size, size, max_size)
         | 
| 117 | 
            +
                rescaled_image = F.resize(image, size)
         | 
| 118 | 
            +
             | 
| 119 | 
            +
                if target is None:
         | 
| 120 | 
            +
                    return rescaled_image, None
         | 
| 121 | 
            +
             | 
| 122 | 
            +
                ratios = tuple(float(s) / float(s_orig) for s, s_orig in zip(rescaled_image.size, image.size))
         | 
| 123 | 
            +
                ratio_width, ratio_height = ratios
         | 
| 124 | 
            +
             | 
| 125 | 
            +
                target = target.copy()
         | 
| 126 | 
            +
                if "boxes" in target:
         | 
| 127 | 
            +
                    boxes = target["boxes"]
         | 
| 128 | 
            +
                    scaled_boxes = boxes * torch.as_tensor(
         | 
| 129 | 
            +
                        [ratio_width, ratio_height, ratio_width, ratio_height]
         | 
| 130 | 
            +
                    )
         | 
| 131 | 
            +
                    target["boxes"] = scaled_boxes
         | 
| 132 | 
            +
             | 
| 133 | 
            +
                if "area" in target:
         | 
| 134 | 
            +
                    area = target["area"]
         | 
| 135 | 
            +
                    scaled_area = area * (ratio_width * ratio_height)
         | 
| 136 | 
            +
                    target["area"] = scaled_area
         | 
| 137 | 
            +
             | 
| 138 | 
            +
                h, w = size
         | 
| 139 | 
            +
                target["size"] = torch.tensor([h, w])
         | 
| 140 | 
            +
             | 
| 141 | 
            +
                if "masks" in target:
         | 
| 142 | 
            +
                    target["masks"] = (
         | 
| 143 | 
            +
                        interpolate(target["masks"][:, None].float(), size, mode="nearest")[:, 0] > 0.5
         | 
| 144 | 
            +
                    )
         | 
| 145 | 
            +
             | 
| 146 | 
            +
                return rescaled_image, target
         | 
| 147 | 
            +
             | 
| 148 | 
            +
             | 
| 149 | 
            +
            def pad(image, target, padding):
         | 
| 150 | 
            +
                # assumes that we only pad on the bottom right corners
         | 
| 151 | 
            +
                padded_image = F.pad(image, (0, 0, padding[0], padding[1]))
         | 
| 152 | 
            +
                if target is None:
         | 
| 153 | 
            +
                    return padded_image, None
         | 
| 154 | 
            +
                target = target.copy()
         | 
| 155 | 
            +
                # should we do something wrt the original size?
         | 
| 156 | 
            +
                target["size"] = torch.tensor(padded_image.size[::-1])
         | 
| 157 | 
            +
                if "masks" in target:
         | 
| 158 | 
            +
                    target["masks"] = torch.nn.functional.pad(target["masks"], (0, padding[0], 0, padding[1]))
         | 
| 159 | 
            +
                return padded_image, target
         | 
| 160 | 
            +
             | 
| 161 | 
            +
             | 
| 162 | 
            +
            class ResizeDebug(object):
         | 
| 163 | 
            +
                def __init__(self, size):
         | 
| 164 | 
            +
                    self.size = size
         | 
| 165 | 
            +
             | 
| 166 | 
            +
                def __call__(self, img, target):
         | 
| 167 | 
            +
                    return resize(img, target, self.size)
         | 
| 168 | 
            +
             | 
| 169 | 
            +
             | 
| 170 | 
            +
            class RandomCrop(object):
         | 
| 171 | 
            +
                def __init__(self, size):
         | 
| 172 | 
            +
                    self.size = size
         | 
| 173 | 
            +
             | 
| 174 | 
            +
                def __call__(self, img, target):
         | 
| 175 | 
            +
                    region = T.RandomCrop.get_params(img, self.size)
         | 
| 176 | 
            +
                    return crop(img, target, region)
         | 
| 177 | 
            +
             | 
| 178 | 
            +
             | 
| 179 | 
            +
            class RandomSizeCrop(object):
         | 
| 180 | 
            +
                def __init__(self, min_size: int, max_size: int, respect_boxes: bool = False):
         | 
| 181 | 
            +
                    # respect_boxes:    True to keep all boxes
         | 
| 182 | 
            +
                    #                   False to tolerence box filter
         | 
| 183 | 
            +
                    self.min_size = min_size
         | 
| 184 | 
            +
                    self.max_size = max_size
         | 
| 185 | 
            +
                    self.respect_boxes = respect_boxes
         | 
| 186 | 
            +
             | 
| 187 | 
            +
                def __call__(self, img: PIL.Image.Image, target: dict):
         | 
| 188 | 
            +
                    init_boxes = len(target["boxes"])
         | 
| 189 | 
            +
                    max_patience = 10
         | 
| 190 | 
            +
                    for i in range(max_patience):
         | 
| 191 | 
            +
                        w = random.randint(self.min_size, min(img.width, self.max_size))
         | 
| 192 | 
            +
                        h = random.randint(self.min_size, min(img.height, self.max_size))
         | 
| 193 | 
            +
                        region = T.RandomCrop.get_params(img, [h, w])
         | 
| 194 | 
            +
                        result_img, result_target = crop(img, target, region)
         | 
| 195 | 
            +
                        if (
         | 
| 196 | 
            +
                            not self.respect_boxes
         | 
| 197 | 
            +
                            or len(result_target["boxes"]) == init_boxes
         | 
| 198 | 
            +
                            or i == max_patience - 1
         | 
| 199 | 
            +
                        ):
         | 
| 200 | 
            +
                            return result_img, result_target
         | 
| 201 | 
            +
                    return result_img, result_target
         | 
| 202 | 
            +
             | 
| 203 | 
            +
             | 
| 204 | 
            +
            class CenterCrop(object):
         | 
| 205 | 
            +
                def __init__(self, size):
         | 
| 206 | 
            +
                    self.size = size
         | 
| 207 | 
            +
             | 
| 208 | 
            +
                def __call__(self, img, target):
         | 
| 209 | 
            +
                    image_width, image_height = img.size
         | 
| 210 | 
            +
                    crop_height, crop_width = self.size
         | 
| 211 | 
            +
                    crop_top = int(round((image_height - crop_height) / 2.0))
         | 
| 212 | 
            +
                    crop_left = int(round((image_width - crop_width) / 2.0))
         | 
| 213 | 
            +
                    return crop(img, target, (crop_top, crop_left, crop_height, crop_width))
         | 
| 214 | 
            +
             | 
| 215 | 
            +
             | 
| 216 | 
            +
            class RandomHorizontalFlip(object):
         | 
| 217 | 
            +
                def __init__(self, p=0.5):
         | 
| 218 | 
            +
                    self.p = p
         | 
| 219 | 
            +
             | 
| 220 | 
            +
                def __call__(self, img, target):
         | 
| 221 | 
            +
                    if random.random() < self.p:
         | 
| 222 | 
            +
                        return hflip(img, target)
         | 
| 223 | 
            +
                    return img, target
         | 
| 224 | 
            +
             | 
| 225 | 
            +
             | 
| 226 | 
            +
            class RandomResize(object):
         | 
| 227 | 
            +
                def __init__(self, sizes, max_size=None):
         | 
| 228 | 
            +
                    assert isinstance(sizes, (list, tuple))
         | 
| 229 | 
            +
                    self.sizes = sizes
         | 
| 230 | 
            +
                    self.max_size = max_size
         | 
| 231 | 
            +
             | 
| 232 | 
            +
                def __call__(self, img, target=None):
         | 
| 233 | 
            +
                    size = random.choice(self.sizes)
         | 
| 234 | 
            +
                    return resize(img, target, size, self.max_size)
         | 
| 235 | 
            +
             | 
| 236 | 
            +
             | 
| 237 | 
            +
            class RandomPad(object):
         | 
| 238 | 
            +
                def __init__(self, max_pad):
         | 
| 239 | 
            +
                    self.max_pad = max_pad
         | 
| 240 | 
            +
             | 
| 241 | 
            +
                def __call__(self, img, target):
         | 
| 242 | 
            +
                    pad_x = random.randint(0, self.max_pad)
         | 
| 243 | 
            +
                    pad_y = random.randint(0, self.max_pad)
         | 
| 244 | 
            +
                    return pad(img, target, (pad_x, pad_y))
         | 
| 245 | 
            +
             | 
| 246 | 
            +
             | 
| 247 | 
            +
            class RandomSelect(object):
         | 
| 248 | 
            +
                """
         | 
| 249 | 
            +
                Randomly selects between transforms1 and transforms2,
         | 
| 250 | 
            +
                with probability p for transforms1 and (1 - p) for transforms2
         | 
| 251 | 
            +
                """
         | 
| 252 | 
            +
             | 
| 253 | 
            +
                def __init__(self, transforms1, transforms2, p=0.5):
         | 
| 254 | 
            +
                    self.transforms1 = transforms1
         | 
| 255 | 
            +
                    self.transforms2 = transforms2
         | 
| 256 | 
            +
                    self.p = p
         | 
| 257 | 
            +
             | 
| 258 | 
            +
                def __call__(self, img, target):
         | 
| 259 | 
            +
                    if random.random() < self.p:
         | 
| 260 | 
            +
                        return self.transforms1(img, target)
         | 
| 261 | 
            +
                    return self.transforms2(img, target)
         | 
| 262 | 
            +
             | 
| 263 | 
            +
             | 
| 264 | 
            +
            class ToTensor(object):
         | 
| 265 | 
            +
                def __call__(self, img, target):
         | 
| 266 | 
            +
                    return F.to_tensor(img), target
         | 
| 267 | 
            +
             | 
| 268 | 
            +
             | 
| 269 | 
            +
            class RandomErasing(object):
         | 
| 270 | 
            +
                def __init__(self, *args, **kwargs):
         | 
| 271 | 
            +
                    self.eraser = T.RandomErasing(*args, **kwargs)
         | 
| 272 | 
            +
             | 
| 273 | 
            +
                def __call__(self, img, target):
         | 
| 274 | 
            +
                    return self.eraser(img), target
         | 
| 275 | 
            +
             | 
| 276 | 
            +
             | 
| 277 | 
            +
            class Normalize(object):
         | 
| 278 | 
            +
                def __init__(self, mean, std):
         | 
| 279 | 
            +
                    self.mean = mean
         | 
| 280 | 
            +
                    self.std = std
         | 
| 281 | 
            +
             | 
| 282 | 
            +
                def __call__(self, image, target=None):
         | 
| 283 | 
            +
                    image = F.normalize(image, mean=self.mean, std=self.std)
         | 
| 284 | 
            +
                    if target is None:
         | 
| 285 | 
            +
                        return image, None
         | 
| 286 | 
            +
                    target = target.copy()
         | 
| 287 | 
            +
                    h, w = image.shape[-2:]
         | 
| 288 | 
            +
                    if "boxes" in target:
         | 
| 289 | 
            +
                        boxes = target["boxes"]
         | 
| 290 | 
            +
                        boxes = box_xyxy_to_cxcywh(boxes)
         | 
| 291 | 
            +
                        boxes = boxes / torch.tensor([w, h, w, h], dtype=torch.float32)
         | 
| 292 | 
            +
                        target["boxes"] = boxes
         | 
| 293 | 
            +
                    return image, target
         | 
| 294 | 
            +
             | 
| 295 | 
            +
             | 
| 296 | 
            +
            class Compose(object):
         | 
| 297 | 
            +
                def __init__(self, transforms):
         | 
| 298 | 
            +
                    self.transforms = transforms
         | 
| 299 | 
            +
             | 
| 300 | 
            +
                def __call__(self, image, target):
         | 
| 301 | 
            +
                    for t in self.transforms:
         | 
| 302 | 
            +
                        image, target = t(image, target)
         | 
| 303 | 
            +
                    return image, target
         | 
| 304 | 
            +
             | 
| 305 | 
            +
                def __repr__(self):
         | 
| 306 | 
            +
                    format_string = self.__class__.__name__ + "("
         | 
| 307 | 
            +
                    for t in self.transforms:
         | 
| 308 | 
            +
                        format_string += "\n"
         | 
| 309 | 
            +
                        format_string += "    {0}".format(t)
         | 
| 310 | 
            +
                    format_string += "\n)"
         | 
| 311 | 
            +
                    return format_string
         | 
    	
        app.py
    CHANGED
    
    | @@ -23,7 +23,7 @@ import torch | |
| 23 | 
             
            from PIL import Image, ImageDraw, ImageFont
         | 
| 24 |  | 
| 25 | 
             
            # Grounding DINO
         | 
| 26 | 
            -
            import GroundingDINO.groundingdino. | 
| 27 | 
             
            from GroundingDINO.groundingdino.models import build_model
         | 
| 28 | 
             
            from GroundingDINO.groundingdino.util import box_ops
         | 
| 29 | 
             
            from GroundingDINO.groundingdino.util.slconfig import SLConfig
         | 
|  | |
| 23 | 
             
            from PIL import Image, ImageDraw, ImageFont
         | 
| 24 |  | 
| 25 | 
             
            # Grounding DINO
         | 
| 26 | 
            +
            import GroundingDINO.groundingdino.transforms as T
         | 
| 27 | 
             
            from GroundingDINO.groundingdino.models import build_model
         | 
| 28 | 
             
            from GroundingDINO.groundingdino.util import box_ops
         | 
| 29 | 
             
            from GroundingDINO.groundingdino.util.slconfig import SLConfig
         |