import streamlit as st import torch from transformers import WhisperProcessor, WhisperForConditionalGeneration from peft import PeftModel import numpy as np import pyaudio # Tải mô hình @st.cache_resource def load_model(): base_model_id = "openai/whisper-tiny" adapter_id = "longhoang2112/whisper-turbo-fine-tuning-adapters" processor = WhisperProcessor.from_pretrained(base_model_id) model = WhisperForConditionalGeneration.from_pretrained(base_model_id) try: model = PeftModel.from_pretrained(model, adapter_id) model.set_active_adapters(adapter_id) except: st.warning("Adapter loading failed. Using base model.") device = "cuda" if torch.cuda.is_available() else "cpu" model.to(device) return processor, model, device processor, model, device = load_model() # Ghi âm def record_audio(duration=5, sample_rate=16000): CHUNK = 1024 FORMAT = pyaudio.paFloat32 CHANNELS = 1 p = pyaudio.PyAudio() stream = p.open(format=FORMAT, channels=CHANNELS, rate=sample_rate, input=True, frames_per_buffer=CHUNK) st.write(f"Đang ghi âm... ({duration} giây)") frames = [] for _ in range(0, int(sample_rate / CHUNK * duration)): data = stream.read(CHUNK) frames.append(np.frombuffer(data, dtype=np.float32)) stream.stop_stream() stream.close() p.terminate() return np.concatenate(frames), sample_rate # Giao diện st.title("Whisper Turbo với Adapter") duration = st.slider("Thời gian ghi âm (giây):", 1, 10, 5) if st.button("Ghi âm"): audio, sample_rate = record_audio(duration) input_features = processor(audio, sampling_rate=sample_rate, return_tensors="pt").input_features.to(device) with torch.no_grad(): predicted_ids = model.generate(input_features) transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)[0] st.write("**Kết quả:**", transcription)