Update app.py
Browse files
app.py
CHANGED
@@ -1,64 +1,108 @@
|
|
1 |
import gradio as gr
|
2 |
-
from
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
):
|
18 |
-
messages = [{"role": "system", "content": system_message}]
|
19 |
-
|
20 |
-
for val in history:
|
21 |
-
if val[0]:
|
22 |
-
messages.append({"role": "user", "content": val[0]})
|
23 |
-
if val[1]:
|
24 |
-
messages.append({"role": "assistant", "content": val[1]})
|
25 |
-
|
26 |
-
messages.append({"role": "user", "content": message})
|
27 |
-
|
28 |
-
response = ""
|
29 |
-
|
30 |
-
for message in client.chat_completion(
|
31 |
-
messages,
|
32 |
-
max_tokens=max_tokens,
|
33 |
-
stream=True,
|
34 |
-
temperature=temperature,
|
35 |
-
top_p=top_p,
|
36 |
-
):
|
37 |
-
token = message.choices[0].delta.content
|
38 |
-
|
39 |
-
response += token
|
40 |
-
yield response
|
41 |
-
|
42 |
-
|
43 |
-
"""
|
44 |
-
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
45 |
-
"""
|
46 |
-
demo = gr.ChatInterface(
|
47 |
-
respond,
|
48 |
-
additional_inputs=[
|
49 |
-
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
50 |
-
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
51 |
-
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
52 |
-
gr.Slider(
|
53 |
-
minimum=0.1,
|
54 |
-
maximum=1.0,
|
55 |
-
value=0.95,
|
56 |
-
step=0.05,
|
57 |
-
label="Top-p (nucleus sampling)",
|
58 |
-
),
|
59 |
-
],
|
60 |
)
|
61 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
|
63 |
-
|
64 |
-
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
+
from unsloth import FastLanguageModel
|
3 |
+
import torch
|
4 |
+
from fpdf import FPDF
|
5 |
+
import csv
|
6 |
+
import os
|
7 |
+
|
8 |
+
hf_token = os.environ.get("HF_TOKEN")
|
9 |
+
|
10 |
+
# Load fine-tuned model
|
11 |
+
model, tokenizer = FastLanguageModel.from_pretrained(
|
12 |
+
model_name = "Devavrat28/peshwai-historian-ai", # replace with your HF username
|
13 |
+
max_seq_length = 2048,
|
14 |
+
dtype = torch.float16,
|
15 |
+
load_in_4bit = True,
|
16 |
+
token=hf_token, # Add your Hugging Face token here
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
)
|
18 |
|
19 |
+
FastLanguageModel.for_inference(model)
|
20 |
+
|
21 |
+
# Logging user Q&A
|
22 |
+
ANSWER_LOG_PATH = "answers.csv"
|
23 |
+
FEEDBACK_LOG_PATH = "feedback.csv"
|
24 |
+
|
25 |
+
def log_query_and_response(question, answer):
|
26 |
+
file_exists = os.path.isfile(ANSWER_LOG_PATH)
|
27 |
+
with open(ANSWER_LOG_PATH, mode="a", encoding="utf-8", newline="") as file:
|
28 |
+
writer = csv.writer(file)
|
29 |
+
if not file_exists:
|
30 |
+
writer.writerow(["Question", "Answer"])
|
31 |
+
writer.writerow([question, answer])
|
32 |
+
|
33 |
+
def save_feedback(question, answer, feedback):
|
34 |
+
with open(FEEDBACK_LOG_PATH, mode="a", encoding="utf-8", newline="") as file:
|
35 |
+
writer = csv.writer(file)
|
36 |
+
writer.writerow([question, answer, feedback])
|
37 |
+
|
38 |
+
# Generate PDF
|
39 |
+
def export_answer_as_pdf(answer_text, filename="peshwai_answer.pdf"):
|
40 |
+
pdf = FPDF()
|
41 |
+
pdf.add_page()
|
42 |
+
pdf.set_font("Arial", size=12)
|
43 |
+
pdf.multi_cell(0, 10, answer_text)
|
44 |
+
pdf.output(filename)
|
45 |
+
return filename
|
46 |
+
|
47 |
+
# Marathi historian prompt + answer
|
48 |
+
def generate_marathi_answer(user_input):
|
49 |
+
prompt = f"""तुम्ही एक इतिहासकार आहात आणि तुमचे संशोधन पेशवाई कालखंडावर आहे.
|
50 |
+
खाली दिलेल्या उदाहरणांप्रमाणे उत्तर सविस्तर आणि माहितीपूर्ण द्या:
|
51 |
+
|
52 |
+
उदाहरण १:
|
53 |
+
विषय: नाना फडणवीसांचे गुप्त राजकारण
|
54 |
+
सविस्तर माहिती: नाना फडणवीस हे केवळ पेशव्यांचे विश्वासू नसून त्यांनी 'बारभाई मंडळा'च्या माध्यमातून पेशव्यांची सत्ता अबाधित ठेवण्याचा प्रयत्न केला होता. ...
|
55 |
+
|
56 |
+
उदाहरण २:
|
57 |
+
विषय: माधवराव पेशव्यांचा आरोग्यावर झालेला परिणाम
|
58 |
+
सविस्तर माहिती: माधवराव पेशवे हे अत्यंत बुद्धिमान होते. मात्र त्यांच्या अल्प वयात मृत्यूचे कारण राजकीय तणाव, घरगुती संघर्ष आणि सातत्याने झालेल्या लढायांमुळे निर्माण झालेले आरोग्याचे बिघाड हे होते...
|
59 |
+
|
60 |
+
---
|
61 |
+
|
62 |
+
आता खालील विषयावर उत्तर लिहा:
|
63 |
+
|
64 |
+
विषय: {user_input}
|
65 |
+
सविस्तर माहिती:"""
|
66 |
+
|
67 |
+
inputs = tokenizer([prompt], return_tensors="pt", truncation=True, padding=True).to(model.device)
|
68 |
+
outputs = model.generate(
|
69 |
+
**inputs,
|
70 |
+
max_new_tokens=512,
|
71 |
+
temperature=0.7,
|
72 |
+
top_p=0.85,
|
73 |
+
repetition_penalty=1.2,
|
74 |
+
no_repeat_ngram_size=3,
|
75 |
+
eos_token_id=tokenizer.eos_token_id,
|
76 |
+
)
|
77 |
+
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
78 |
+
final_answer = generated_text.split("सविस्तर माहिती:")[-1].strip()
|
79 |
+
log_query_and_response(user_input, final_answer)
|
80 |
+
return final_answer
|
81 |
+
|
82 |
+
# Gradio App
|
83 |
+
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
84 |
+
gr.Markdown("# 📜 पेशवाई इतिहास - AI इतिहासकार")
|
85 |
+
gr.Markdown("मराठीत प्रश्न विचारा आणि पेशवाई काळातील सखोल, अभ्यासपूर्ण उत्तर मिळवा!")
|
86 |
+
|
87 |
+
input_box = gr.Textbox(lines=2, placeholder="उदा: शनिवार वाड्याचे ऐतिहासिक महत्त्व काय आहे?", label="तुमचा प्रश्न येथे लिहा:")
|
88 |
+
output_box = gr.Textbox(lines=10, label="इतिहासकाराचे उत्तर")
|
89 |
+
feedback_radio = gr.Radio(["होय", "नाही"], label="हे उत्तर उपयुक्त होते का?")
|
90 |
+
file_output = gr.File(label="PDF डाउनलोड")
|
91 |
+
|
92 |
+
generate_btn = gr.Button("उत्तर मिळवा 🚀")
|
93 |
+
download_btn = gr.Button("उत्तर PDF म्हणून डाउनलोड करा")
|
94 |
+
|
95 |
+
def handle_all(user_input):
|
96 |
+
answer = generate_marathi_answer(user_input)
|
97 |
+
return answer
|
98 |
+
|
99 |
+
def generate_pdf(user_input):
|
100 |
+
answer = generate_marathi_answer(user_input)
|
101 |
+
filename = export_answer_as_pdf(answer)
|
102 |
+
return answer, filename
|
103 |
+
|
104 |
+
generate_btn.click(fn=handle_all, inputs=input_box, outputs=output_box)
|
105 |
+
download_btn.click(fn=generate_pdf, inputs=input_box, outputs=[output_box, file_output])
|
106 |
+
feedback_radio.change(fn=save_feedback, inputs=[input_box, output_box, feedback_radio], outputs=[])
|
107 |
|
108 |
+
demo.launch(share=True, debug=True)
|
|