import os import gradio as gr import torch import numpy as np from transformers import pipeline from dia.model import Dia from dac.utils import load_model as load_dac_model from accelerate import init_empty_weights, load_checkpoint_and_dispatch # Retrieve your HF token from the Space secrets HF_TOKEN = os.environ["HF_TOKEN"] # Automatically shard across 4× L4 GPUs device_map = "auto" # 1. Load RVQ codec rvq = load_dac_model(tag="latest", model_type="44khz") rvq.eval() if torch.cuda.is_available(): rvq = rvq.to("cuda") # 2. Load VAD via Hugging Face pipeline (no segmentation mismatch) vad_pipe = pipeline( "voice-activity-detection", model="pyannote/voice-activity-detection", use_auth_token=HF_TOKEN, device=0 if torch.cuda.is_available() else -1 ) # 3. Load Ultravox (speech-in → text+LLM) ultravox_pipe = pipeline( model="fixie-ai/ultravox-v0_4", trust_remote_code=True, device_map=device_map, torch_dtype=torch.float16 ) # 4. Load diffusion prosody model diff_pipe = pipeline( "audio-to-audio", model="teticio/audio-diffusion-instrumental-hiphop-256", trust_remote_code=True, device_map=device_map, torch_dtype=torch.float16 ) # 5. Load Dia TTS with multi-GPU dispatch with init_empty_weights(): dia = Dia.from_pretrained( "nari-labs/Dia-1.6B", torch_dtype=torch.float16, trust_remote_code=True ) dia = load_checkpoint_and_dispatch( dia, "nari-labs/Dia-1.6B", device_map=device_map, dtype=torch.float16 ) # 6. Inference function def process_audio(audio): sr, array = audio array = array.numpy() if torch.is_tensor(array) else array # Voice activity detection speech = vad_pipe(array, sampling_rate=sr)[0]["chunks"] # RVQ encode/decode x = torch.tensor(array).unsqueeze(0).to("cuda") codes = rvq.encode(x) decoded = rvq.decode(codes).squeeze().cpu().numpy() # Ultravox ASR → LLM out = ultravox_pipe({"array": decoded, "sampling_rate": sr}) text = out.get("text", "") # Diffusion-based prosody pros = diff_pipe({"array": decoded, "sampling_rate": sr})["array"][0] # Dia TTS synth tts = dia.generate(f"[emotion:neutral] {text}").squeeze().cpu().numpy() tts = tts / np.max(np.abs(tts)) * 0.95 return (sr, tts), text # 7. Gradio UI with gr.Blocks() as demo: gr.Markdown("## Maya-AI: Supernatural Conversational Agent") audio_in = gr.Audio(source="microphone", type="numpy", label="Your Voice") send = gr.Button("Send") audio_out = gr.Audio(label="AI’s Response") text_out = gr.Textbox(label="Generated Text") send.click(process_audio, inputs=audio_in, outputs=[audio_out, text_out]) if __name__ == "__main__": demo.launch()